IRSCPA

BTS INFORMATIQUE INDUSTRIELLE PHYSIQUE APPLIQUEE

Durée: 3 heures

Coefficient: 3

L'usage des calculatrices est autorisé

MESURE D'UNE FORCE F, EMISSION ET RECEPTION DE L'INFORMATION.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

Les quatre parties peuvent être traitées indépendamment les unes des autres.

I) Première partie : (6 points)

Création d'un signal proportionnel à la force F.

Un capteur de force est constitué d'un corps d'épreuve métallique à structure élastique sur lequel sont collées 4 résistances piézorésistives R₁, R₂, R₃ et R₄. Les 4 résistances sont montées en pont de Wheastone.

Montage figure 1 page 4/7. Les amplificateurs opérationnels sont considérés comme parfaits. Ils sont alimentés sous +12 V et -12 V. Ils fonctionnent en régime linéaire.

Lorsque aucune force ne s'exerce sur le capteur, les 4 résistances sont égales à $R_0 = 400 \Omega$.

Lorsqu'une force F s'exerce sur le capteur, les résistances R₁ et R₄ subissent une compression, les résistances R2 et R3 subissent un étirement. On a :

$$R_1 = R_4 = R_0 - \Delta R$$

$$R_2 = R_3 = R_0 + \Delta R \qquad \text{avec } \Delta R = a.F > 0$$

avec
$$\Delta R = a.F > 0$$

On donne:

$$a = 5.4 \times 10^{-3} \Omega/N$$

$$E = 10 \text{ V}.$$

$$R_5 = 10 \text{ k}\Omega$$
. $R_6 = R_7 = 22 \text{ k}\Omega$. $R_8 = R_9 = R_{10} = R_{11} = 10 \text{ k}\Omega$. $R_{13} = 47 \text{ k}\Omega$.

- 1) Déterminer la tension v_A en fonction de E, R_1 et R_2 et la tension v_B en fonction de E, R_3 et R_4 . En déduire la différence de potentiel v_A - v_B en fonction de E, R₁, R₂, R₃ et R₄.
- 2) Que vaut v_A v_B en l'absence d'effort sur le capteur ?
- 3) Dans le cas où une force F s'exerce sur le capteur, déterminer v_A v_B en fonction de R_0 , ΔR et E. Calculer les valeurs numériques de v_A - v_B et F lorsque $\Delta R = 0.80 \Omega$.
- 4) Déterminer le courant i en fonction de v_A, v_B et R₅. En déduire v_C - v_D en fonction de v_A - v_B , R_5 , R_6 et R_7 . Calculer $v_C - v_D$ en fonction de $v_A - v_B$.
- 5)Déterminer la tension v_E en fonction de v_C et v_D.
- 6) Déterminer la tension v_F en fonction de v_E , R_{12} et R_{13} .
- 7) Calculer la valeur numérique de R_{12} pour avoir la relation $v_F = (7,5) \times \Delta R$ (v_F s'exprimant en volts et ΔR en ohms).

Calculer v_F pour $\Delta R = 0$ et $\Delta R = 0.8 \Omega$.

PHYSIQUE APPLIQUEE

II) Deuxième partie : (4 points)

Émission d'un signal infrarouge de fréquence proportionnelle à la force F.

On forme le signal v_{S1} tel que lorsque v_{S1} et v_F sont exprimés en volts on puisse écrire : $v_{S1} = v_F + 2$.

Le signal v_{S1} alimente un oscillateur commandé en tension (VCO) qui donne un signal carré v_{S2} (0-10V) de fréquence f_E , et de rapport cyclique 0,5 : la courbe f_E fonction de v_{S1} est donnée figure 2 page 4/7.

La tension v_{S2} commande un amplificateur à transistor qui alimente 2 diodes émettrices d'un rayonnement infrarouge (figure 3 page 5/7).

On donne:

 $R_{14} = 22 \text{ k}\Omega$; $R_{15} = 4.7 \text{ k}\Omega$; $R_{17} = 47 \Omega$. Tension seuil d'une diode infrarouge : 1,5 V.

- 1) Déterminer graphiquement la fréquence f_E pour $v_{S1} = 8.0 \text{ V}$.
- 2) Calculer la tension v_G pour les 2 valeurs 0 et 10 V de v_{S2} (considérer pour les calculs le courant de base négligeable devant le courant qui passe dans R_{15}). En déduire suivant la valeur de v_{S2} l'état (bloqué ou passant) du transistor T_1 .
 - 3) En supposant que le transistor est passant et saturé, (ce qui donne $v_{CE} \approx 0.3 \text{ V}$) calculer :
 - 3.a) le courant in dans les diodes infrarouges :
 - 3.b) la puissance dissipée dans la résistance R₁₇.
 - 4)Préciser l'utilité de la résistance R₁₇.
- 5)Sachant que la longueur d'onde du rayonnement infrarouge est de 1,2 μ m, calculer la fréquence de l'onde électromagnétique associée. On donne la vitesse de la lumière c = $3,00 \times 10^8$ m/s

III) Troisième partie : (5 points)

Réception du signal et filtrage pour éliminer les parasites.

Le rayonnement infrarouge est reçu par une photodiode placée à quelques mètres de l'émetteur (figure 4 page 5/7).

On admet que la tension v_{S3} est un signal carré alternatif de fréquence $f_E = 9.0$ kHz prenant les valeurs $-V_0$ et $+V_0$ avec $V_0 = 5.0$ mV.

On rappelle que le développement en série de Fourier d'un tel signal s'écrit :

$$v_{S3}(t) = \frac{4.V_0}{\pi} \left[\sin(\omega t) + \frac{\sin(3.\omega t)}{3} + \frac{\sin(5.\omega t)}{5} + \dots \right] \qquad (\omega = 2\pi \times f)$$

Le bloc A est un amplificateur sélectif, on appelle A le module de son amplification et G son gain : $G = 20 \times log(A)$.

PHYSIQUE APPLIQUEE

- 1)Tracer sur papier millimétré le spectre du signal $v_{\rm S3}$ en se limitant à l'harmonique 5. (prendre 2,5cm pour 9 kHz en abscisse)
 - 2) La courbe de gain de l'amplificateur A est donnée figure 5 page 6/7. Déterminer graphiquement l'amplification A aux fréquences f_E , $(3 \times f_E)$ et $(5 \times f_E)$.
- 3) En déduire les amplitudes du fondamental, de l'harmonique 3 et de l'harmonique 5 du signal $v_{\rm S4}$. Tracer sur papier millimétré le spectre de ce signal en se limitant à l'harmonique 5. Que peut-on en conclure sur la forme de ce signal ?

IV) Quatrième partie : (5 points)

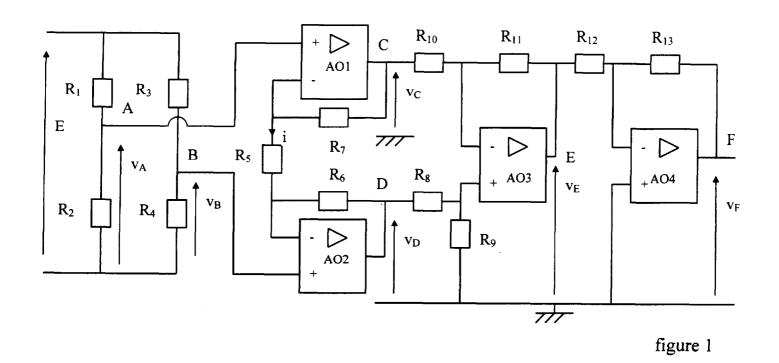
Démodulation de fréquence du signal v_{S4}.

Le signal v_{S4} de fréquence f_E est mis en forme pour donner un signal v_E carré 0-10V; celui-ci alimente une boucle à verrouillage de phase (figure 6 page 7/7).

On rappelle que dans le fonctionnement normal d'une boucle à verrouillage de phase, les signaux v_E et v_R ont même fréquence.

La modélisation de la boucle à verrouillage de phase autour d'un point de repos donne le schéma figure 7 page 7/7 où p représente la variable de Laplace.

H(p) est la fonction de transfert d'un filtre passe-bas du premier ordre : H(p) = $\frac{1}{1 + \tau p}$


On donne: $K_{\phi} = 12,73 \text{ V.rad}$, $k_0 = 600 \text{ Hz/V}$, $\tau = 2,0 \text{ ms.}$

- 1)Déterminer la fonction de transfert $T(p) = \frac{V_D(p)}{f_E(p)}$
- 2)Mettre T(p) sous la forme $\frac{T_0}{1 + 2.m. \frac{p}{\omega_1} + \frac{p^2}{\omega_1^2}}$

Déterminer $T_0,$ m et ϖ_1 fonction de K_{φ} , k_0 et $\tau.$ Calculer m.

- 3)On admet que lors d'une commande en échelon, un système du deuxième ordre de la forme de T(p) répond sans dépassement si m est supérieur à 1 et avec dépassement si m est inférieur à 1. Dans ce dernier cas, le dépassement d est égal à $\exp(-\frac{m.\pi}{\sqrt{1-m^2}})$.
 - 3.a) Calculer s'il y a lieu le dépassement.
- 3.b) Lorsque le dépassement est supérieur à 0,3, on considère que le degré de stabilité du système est insuffisant. Conclure sur la stabilité de la boucle à verrouillage de phase.

PHYSIQUE APPLIQUEE

OSCILLATEUR COMMANDE EN TENSION

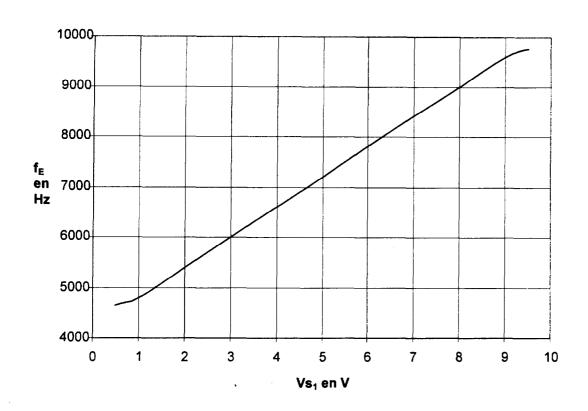


figure 2

PHYSIQUE APPLIQUEE

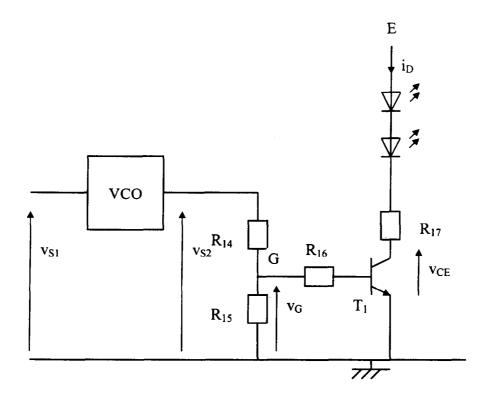


figure 3

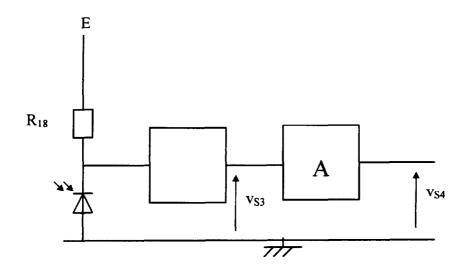


figure 4

BTS INFORMATIQUE INDUSTRIELLE PHYSIQUE APPLIQUEE

Gain de l'amplificateur A

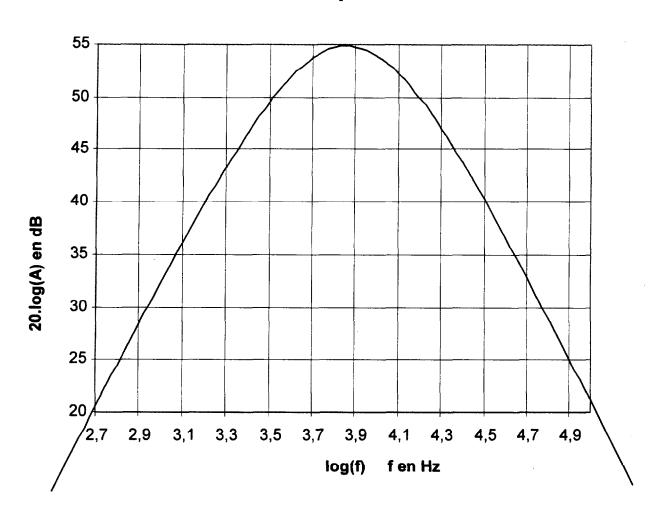


figure 5

PHYSIQUE APPLIQUEE

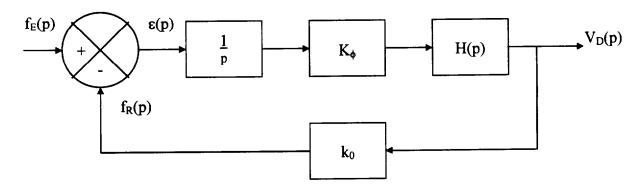


figure 7