A CADEMIE DE POITIERS Session Juin 2000				2000
SPECIALITE :	GROUPE V	Coef :	Durée	1 H 00
EPREUVE :	Mathématiqu	ıes	Fet	uille : 1/5

CAP Mathématiques Groupe V

Diplômes concernés:

INTITULE

CAP Vente relation clientèle A et B

CAP Distribution et commercialisation des équipements automobiles

CAP Distribution et commercialisation des produits alimentaires

CAP Magasinage et messagerie

CAP Agent d'accueil et de conduite transport de voyageurs

CAP Fleuriste

CAP Assurance

CAP Cuisine

CAP Restaurant

CAP Hébergement

CAP Café - Brasserie

ACADEMIE	DE POITIERS		Session Juin	2000
SPECIALITE :	GROUPE V	Coef :	Durée	1 H 00
EPREUVE :	Mathématiques		Fe	uille : 2/5

La clarté des raisonnements, la qualité de la rédaction et la précision des résultats interviendront dans l'appréciation des copies. L'usage des instruments de calcul est autorisé.

PROBLEME N° 1

Un commerçant achète 10 voitures en Allemagne, à 850 km de son point de vente. Pour les transporter, les $\frac{3}{5}$ de cette distance se font en train et le reste en camion.

- 1) Quelle est la distance parcourue en train? en camion?
- 2) Le prix d'achat net de ce lot est 1 000 825 F. Les frais de transport sont :

- en train : 8 040 F - en camion : 2 936,40 F

Calculer le prix d'achat de ce lot.

- 3) Le prix de vente hors taxe de ce lot est de 1 349 072,50 F. Calculer le prix de vente taxe comprise de ce lot (TVA 20,6 %).
- 4) Sachant que 1 euro = 6,55957 F, quel prix en euros, le commerçant doit-il afficher pour une voiture ?

PROBLEME N° 2

Une étude démographique des Pays de Loire fait apparaître que pour une commune, la répartition de la population en fonction de l'âge s'établit comme suit :

Age	moins	de 20	de 30	de 50	plus de
	de 20 ans	à 30 ans	à 50 ans	à 60 ans	60 ans
Effectif	2 100	3 750	6 900	1 800	450

- 1) Compléter le tableau statistique de l'annexe 1.
- 2) Représenter cette série dans le diagramme à secteurs circulaires de l'annexe 1.

PROBLEME N° 3

- 1) Un capital de 4 800 F est placé à 4 % l'an. Pour une période de 5 mois :
 - a) Calculer le montant de l'intérêt produit.
 - b) Calculer la valeur acquise au bout de cette période.

A CADEMIE DE POITIERS Session Juin 2000				2000
SPECIALITE :	GROUPE V	Coef :	Durée	1 H 00
EPREUVE :	Mathématiques		Fea	uille : 3/5

- 2) Ce même capital est maintenant placé pendant x mois.
 - a) Reproduire et compléter le tableau ci-dessous :

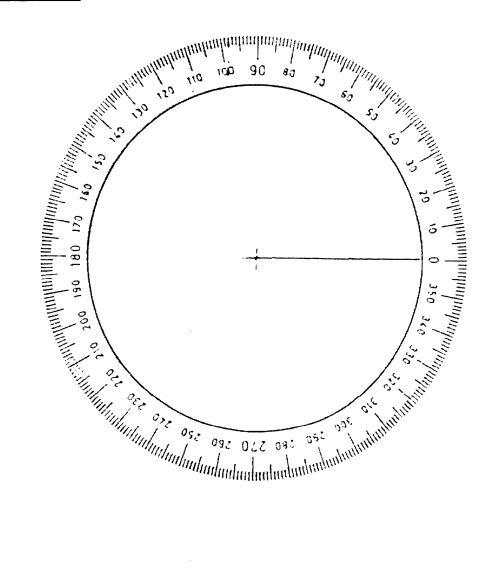
x mois	0	10	12
Intérêt I ₁			

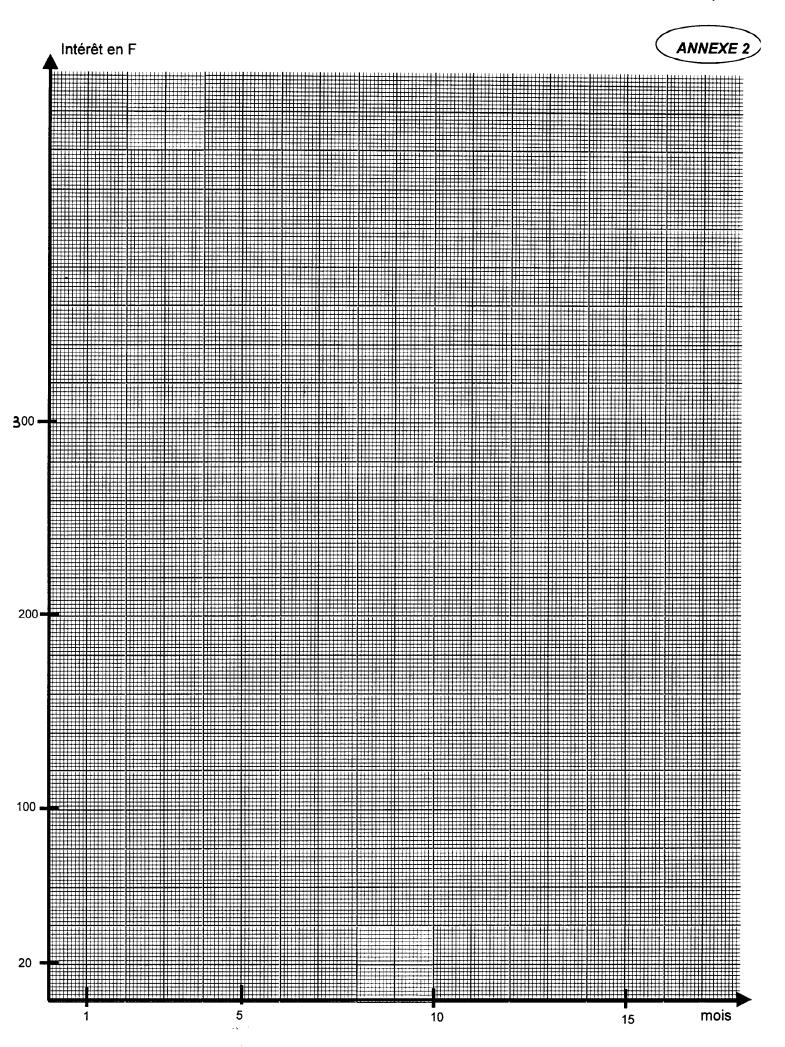
- b) Représenter l'intérêt l₁ en fonction de x (pour x compris entre 0 et 12 mois) sur le graphique de l'annexe 2 à remettre avec la copie.
- c) Par quel nombre faut-il multiplier la durée en mois pour obtenir l'intérêt ? En déduire la relation $I_1 = f(x)$.
- 3) Un autre capital C est placé à 5 % l'an. Il rapporte un intérêt l₂ ; cet intérêt l₂ est représenté en fonction de x mois sur le graphique de l'annexe 2.
 - a) Lire sur le graphique la valeur de l₂ pour 5 mois de placement ; laisser les traits de rappels apparents.
 - b) Calculer alors la valeur du capital C.

Barème

Problème 1: 7 (1 + 0.5 + 1.5 + 2 + 2)

Problème 2: 5 (2,5 + 2,5)


Problème 3: 8(1.5 + 0.5 + 1.5 + 2 + 0.5 + 0.5 + 0.5 + 1)



1 - Tableau statistique

Age	Effectif	Fréquence en %	Angles en ° (arrondis au degré le plus proche)
moins de 20 ans	2 100		
de 20 à 30 ans	3 750		
de 30 à 50 ans	6 900		
de 50 à 60 ans	1 800		
plus de 60 ans	450		
Total			

2 - Diagramme circulaire

FORMULAIRE DE MATHEMATIQUES

CAP Autonomes du secteur industriel

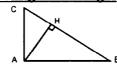
Identités remarquables

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$(a + b)(a - b) = a^2 - b^2$$

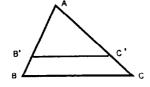
Puissances d'un nombre


$$10^0 = 1$$
 ; $10^1 = 10$; $10^2 = 100$; $10^3 = 1000$ $a^2 = a \times a$; $a^3 = a \times a \times a$

Proportionnalité

a et b sont proportionnels à c et d si
$$\frac{a}{c} = \frac{b}{d}$$

Relations métriques dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

AH.BC = AB.AC

$$\sin \widehat{B} = \frac{AC}{BC}$$
; $\cos \widehat{B} = \frac{AB}{BC}$; $\tan \widehat{B} = \frac{AC}{AB}$

Enoncé de Thalès (relatif au triangle)

alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Aires dans le plan

Triangle: $\frac{1}{2}$ Bh

Parallélogramme : Bh

Trapèze : $\frac{1}{2}(B+b)h$

Disque : πR^2

Secteur circulaire angle α en degré : $\frac{\alpha}{360}\pi R^2$

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit d'aire de base B et de hauteur h :

Volume: Bh

Sphère de rayon R :

Aire : $4\pi R^2$

Volume : $\frac{4}{3}\pi R^3$

Cône de révolution ou Pyramide d'aire de base B et de hauteur h :

Volume: $\frac{1}{3}$ Bh

FORMULAIRE DE MATHEMATIQUES

CAP Autonomes du secteur Tertiaire

Identités remarquables

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$(a + b)(a - b) = a^2 - b^2$$

Puissances d'un nombre

$$10^{0} = 1$$
 ; $10^{1} = 10$; $10^{2} = 100$; $10^{3} = 1000$ $a^{2} = a \times a$; $a^{3} = a \times a \times a$

Proportionnalité

a et b sont proportionnels à c et d si
$$\frac{a}{c} = \frac{b}{d}$$

Statistiques

Moyenne \bar{x} :

$$\bar{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n_1 + n_2 + \dots + n_p}$$

Calcul d'intérêts

C: capital; t: taux annuel;

n : nombre de jours ;

A : valeur acquise après n jours

Intérêts simples : $I = \frac{Ctn}{360}$

Valeur acquise: A = C + I