SOUS-EPREUVE U.4.1 – SCIENCES PHYSIQUES APPLIQUEES Partie spécifique à l'option A

PREMIER EXERCICE

1. PROPRIETES MAGNETIQUES D'UN ACIER.

1.1. TRACE D'UNE COURBE DE PREMIERE AIMANTATION.

Le relevé de la courbe de première aimantation d'un acier a fourni les couples de valeurs suivantes:

H	100	208	320	379	440	454	480	508	534	615	800	1280	2080	3200
(Am ⁻¹)	ļ													
В	0,080	0,193	0,362	0,507	0,663	0,701	0,750	0,791	0,827	0,918	1,081	1,317	1,480	1,541
(T)			-											

- a) Sachant que la perméabilité magnétique du vide est : $\mu_o = 4\pi.10^{-7}$ unité S.I.,
- calculer la perméabilité magnétique relative μ_r de l'acier pour chaque couple de valeurs (H, B) et rassembler les résultats dans un tableau ;
- tracer la courbe $\mu_r = f(H)$ donnant la perméabilité magnétique relative μ_r de l'acier en fonction de l'excitation magnétique H Déterminer graphiquement la perméabilité magnétique relative maximale de l'acier.
- b) à partir du tableau suivant, déduire le pourcentage massique de carbone dans l'acier.

% massique de carbone	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
$\mu_{\rm r}$	2050	1477	1064	800	610	511	441	386

1.2. CYCLE D'HYSTERESIS.

Schématiser l'allure du cycle d'hystérésis d'un acier en précisant les grandeurs et leurs unités S.I. portées sur les axes.

Définir l'excitation coercitive et le champ rémanent; noter les points correspondants sur le cycle. Comment l'allure des cycles permet-elle de classer les différents aciers en fonction de leurs propriétés magnétiques ? Justifier votre réponse.

BREVET DE TECHNICIEN SUPÉRIEUR TRAITEMENT DES MATÉRIAUX PARTIE SPECIFIQUE A L'OPTION A								
Sous Epreuve U.41 : Science	es Physiques Appliquées	THPHY	SUJET					
SESSION: 2001	Durée: 2h00	Coefficient: 2		Page 4/6				

DEUXIEME EXERCICE

De nombreuses questions sont indépendantes du reste du problème.

1° partie: Etude chimique du gaz endothermique

Le gaz endothermique, très utilisé dans les traitements thermochimiques, est obtenu dans un "générateur endothermique".

A la température où ce gaz endothermique est produit (1050 °C), il est formé principalement de 5 constituants gazeux dans les proportions suivantes, sous une pression totale de 1 bar :

gaz	H_2	H ₂ O	N ₂	СО	CO ₂
% volumique dans le	29,8	0,90	46,1	22,6	0,50
mélange					

On rappelle les équations chimiques de deux des équilibres principaux qui interviennent lors des traitements:

$$2 CO_{(g)}$$
 \geq $C_{\gamma(s)}$ + $CO_{2(g)}$

où C_γ représente le carbone en solution dans l'austénite.

D'autres équilibres s'établissent dans la phase gazeuse, en particulier
$$CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)} \stackrel{réaction (1)}{\rightleftharpoons}$$

L'enthalpie standard de la réaction (1) est $\Delta_r H^{\circ}_{1} = -41,2 \text{ kJ.mol}^{-1}$ (valeur supposée indépendante de la température)

On rappelle la loi de Van't Hoff : $\frac{d \ln K}{dT} = \frac{\Delta_r H^o}{RT^2}$

On donne $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Question 1-1: Dans cette première question, on suppose que le gaz endothermique est utilisé pour une

En justifiant votre réponse (par exemple à l'aide des données ci-dessus), classer les 5 constituants en :

- * constituants utiles au traitement thermique envisagé
- * constituants défavorables pour le traitement thermique envisagé
- * constituants sans action notable sur l'acier dans les conditions du traitement.

Question 1-2: A la sortie du générateur, le gaz endothermique est à $\theta_1 = 1050$ °C. On suppose qu'il est alors à l'équilibre.

Vérifier que la valeur K_l de la constante d'équilibre de la réaction (1) à cette température est environ $K_1 = 0.73$

Question 1-3: Montrer que la loi de Van't Hoff peut s'écrire sous la forme

$$\ln \frac{K_2}{K_1} = \frac{\Delta_r H^{\circ}}{R} \cdot \frac{(T_2 - T_1)}{T_1 T_2}$$

où ln désigne le logarithme népérien

BREVET DE TECHNICIEN SUPÉRIEUR TRAITEMENT DES MATÉRIAUX PARTIE SPECIFIQUE A L'OPTION A								
Sous Epreuve U.41 : Scien		THPHY	SUJET					
SESSION: 2001	Durée : 2h00	Coefficient:	2	Page 5/6				

<u>Question 1-4</u>: Le gaz endothermique peut aussi être utilisé pour réaliser des nitrocarburations. Il est alors introduit dans un four où règne la température $\theta'_1 = 570$ °C.

Calculer la valeur K'_l de la constante d'équilibre de la réaction (1) à cette température et en déduire dans quel sens la réaction est déplacée par l'abaissement de température.

Ce résultat était-il prévisible ? Justifier votre réponse.

2° partie: Etude du pouvoir nitrurant d'une atmosphère

Divers procédés sont utilisés industriellement pour réaliser les nitrocarburations.

L'un d'entre eux consiste à mélanger à l'entrée du four (ou dans le four) de l'ammoniac et du gaz endothermique.

Lors de la nitrocarburation, il se forme, entre autres, des nitrures à la surface de l'acier. Pour mesurer l'activité nitrurante d'une atmosphère, on utilise le "potentiel azote". Ce potentiel, noté η , est tel que

$$\eta = [p(NH_3)].[p(H_2)]^{-3/2}$$

avec

p(NH₃) = pression partielle de NH₃

p(H₂) = pression partielle de H₂, les pressions partielles étant exprimées en bar.

L'activité nitrurante est d'autant plus grande que η est grand.

Le tableau ci-dessous indique, pour l'atmosphère de nitrocarburation {NH3 + gaz endothermique} étudiée, les pressions partielles des principaux gaz en fonction du pourcentage volumique de NH₃ résiduel (c'est à dire non dissocié) sous une pression totale de 1 bar :

% volumique NH ₃	40	37	33,3	30	25
p(CO) (en bar)	0,106	0,103	0,100	0,0972	0,0942
p(NH ₃) "	0,400	0,370	0,333	0,300	0,250
p(H ₂) "	0,237	0,264	0,299	0,328	0,374
p(N ₂) "	0,248	0,253	0,260	0,266	0,275
η	η_1	η_2	η_3	η_4	η_5

Question 2-1: Calculer les 5 valeurs du potentiel azote η dans le tableau ci-dessus.

Question 2-2: Pour obtenir des résultats satisfaisants, on doit avoir $\eta > 1,5$.

Tracer le graphe $\eta = f[p(NH_3)]$. En déduire le pourcentage de NH_3 résiduel minimum pour que la condition $\eta > 1,5$ soit vérifiée.

<u>Question 2-3</u>: Industriellement, on amène η à la valeur désirée en réglant le débit d'ammoniac dans le four.

Pour augmenter la valeur de η , faut-il augmenter ou diminuer le débit de NH_3 ? Justifier votre réponse.

BREVET DE TECHNICIEN SUPÉRIEUR TRAITEMENT DES MATÉRIAUX PARTIE SPECIFIQUE A L'OPTION A							
Sous Epreuve U.41 : Science	es Physiques Appliquées	THPHY	SUJET				
SESSION: 2001	Durée : 2h00	Coefficient:	2	Page 6/6			