Thème A: SO4 - Circuit parcouru par un courant alternatif sinusoïdal monophasé.

ON DONNE:

Une bobine $R=30 \Omega$; L=150mH estalimentée par une source alternative monophasée de fréquence 50Hz, consomme 150W. Son schéma équivalent:

I R U_L U_L

ON DEMANDE:

1) Calculer l'impédance de cette bobine.	
7 -2	

2) Calculer l'intensité du courant qui traverse cette bobine.

 $P = R T^3 = D T = \sqrt{\frac{P}{R_B}} = 2,236A \qquad \boxed{T = 2,24A}$

3) Calculer son facteur de puissance.

 $\cos \beta = \frac{R}{20} = 0,53667 \quad \left[\cos \beta = 0,539\right]$

4) Calculer les tensions UR, UL et UB.

 $U_{R} = R \cdot T = 67,2 \vee$ $U_{L} = 67,2 \vee$ $U_{L} = 106 \vee$ $U_{R} = 67,2 \vee$ $U_{L} = 106 \vee$ $U_{R} = 126 \vee$ $U_{R} = 126 \vee$

5) Représenter le diagramme de Fresnel correspondant. (voir document joint feuille 2/3)

6) Calculer la puissance réactive consommée par cette bobine.

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	*	
- 特別 <u>建立</u> 物。 1 - 三月49	L ,	
C- 1119 T	- 231 15 1/20	Q 237 VAIL
	·····	
I + 10 a hily top at	,	\
- 10 cm (mm) m		·

	BEP	CAP
NOTE "EP3"	/10	/8

1	Note Thème A	/7
	Note Thème B	/3
]		

BEP CAP

1,5

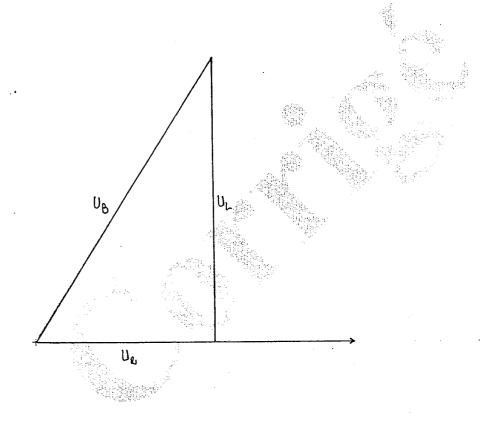
1

1,5

1

1

1


1,5

1,5

1,5

5) Représenter le diagramme de Fresnel correspondant.

Echelle: 1cm = 10V

CADEMIE D	E CAEN - BEP et C	AP ELECTROTECHNIQU	JE SESSION 2001
ujet N° 1A	EP3 - Applicat	tion Numérique	Feuille 1/3
Nom:		énom:	
N° d'inscription:	BEP	CAP	***************************************

ACADEMIE D	E CAEN	- BEP et CAP ELECTROTECHNIQU	JE SESSION	2001
Sujet N° 1A	EP3 -	- Application Numérique	Feuille	2/3
Nom:		Prénom:		
No d'incomintion	DED	CAD		

Thème B: SO3 - Circuit parcouru par un courant continu.

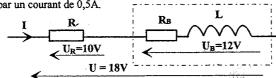
ON DONNE:

Une batterie ayant une capacité de 100Ah, est constituée de 120 accumulateurs montés en série.

Les caractéristiques d'un accumulateur:

$$e = 1,25 \text{ V} \quad r = 0,3 \Omega$$

ON DEMANDE:	BEP	CAI
1) Calculer la FEM E de cette batterie:		
E = 120 x e = 120 x 1,25 = 150V (E= 150V)	0,5	0,5
2) Calculer sa résistance interne:		
Ri = 120x C = 120x 0,3 = 36.5 [Ri = 36.5]	0,5	0,5
Sachant que cette batterie débite dans une résistor de résistance 4 Ω :		
3) Calculer l'intensité du courant quelle débite:		
for d'ohn cité finélation le = E-RiI		
ate recaption U = R. I		
$ \mathcal{J}_{a} = \underbrace{\mathbb{E}}_{R_{1}+\Omega} = 3,15A $ $ \underbrace{\mathbb{E}}_{a} = 3,15A $	1	1
R:+n! [I= 3,25A-)		
4) Dans ces conditions de fonctionnement, au bout de combien de temps		
sera-t-elle déchargée (Exprimer le temps en Heure, Minutes et Secondes)		
Q= I, t = 26 L I = 26,67 l t= 26 L 10'12"	1	_
Sort: t= 16 h 40'12" t= 16 h 10'12"	ı	1
Note Thème B	/3	/3


ACADEMIE D	E CAEN	- BEP et CAP ELECTROTECHNIQU	UE SESSION 2001
Sujet Nº 1A	EP3 -	Application Numérique	Feuille 3/3
Nom:	•••••	Prénom:	
		CAP	

Thème A: SO4 - Circuit parcouru par un courant alternatif sinusoïdal monophasé.

ON DONNE:

ON DEMANDE:

Un dipole, constituéd' une bobine et un résistor branchés en série, l'ensemble alimenté par une source alternative monophasée de fréquence 50Hz et parcouru par un courant de 0,5A.

1) Représenter le diagramme de Fresnel correspondant. (voir document joint feuille 2/3).

2) Déterminer à partir du diagramme les tensions aux bornes de RB et L URG = AV

3) Calculer l'impédance du dipole Z.

7=	<u>u</u>	R	_مد که 3		7	7	
	I	0,5		delpe.		l ————————————————————————————————————	 _

4) Calculer l'impédance de la bobine ZB.

Z _ UB .	<u> </u>	Zo = 21	12
5 I	95	1	

5) Calculer l' inductance de la bobine $RB = 8\Omega$

ZL R	م + (العام	us=usf		
1 -	ZL-RL	- 0.072H	1 L = 72 mH)
	200 f			

6) Calculer le facteur de puissance de la bobine.

Culculet te jucient	ue paissant	e ue tu ov	Olite.		
coof Rn	- 8 -	- 0,333			
200	24	/	Jesta	- 0 399	
			1		

		BEP	CAP
NOTE	"EP3"	/10	/8

Note Thème A	/0
Note Thème B	1

BEP CAP

1,5

<u>-</u>

0,5

<u>-</u>

0,5

1

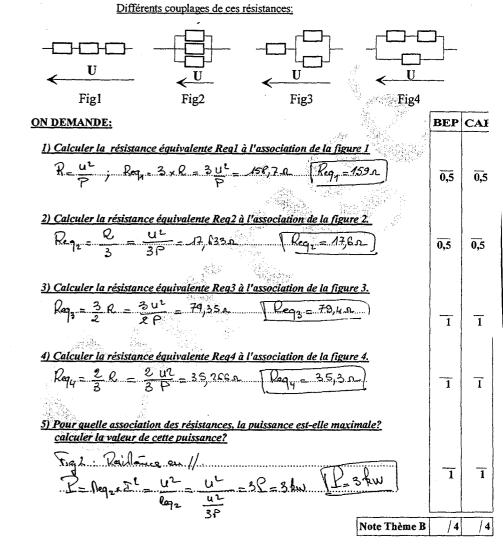
 $\overline{1}$

1

1

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet N° 1B	EP3 - Application Numérique	Feuille 1/3
Nom:	Prénom:	
N° d'inscription:	BEP CAP	


1) Représenter le diagramme de Fresnel correspondant.

Echelle: 1cm = 1V

	U _S	/ UL
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ur	Urb

ACADEMIE D	DE CAEN - BEP et CAP ELECTROTECHNIC	UE SESSION 2001
Sujet Nº 1B	EP3 - Application Numérique	Feuille 2/3
Nom:	Prénom:	
	: BEP CAP	

Thème B: SO3 - Circuit parcouru par un courant continu. ON DONNE: 3 résistances identiques 230 V - 1 kW

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001				
Sujet N° 1B	EP3 -	Application Numérique	Feuille	3/3
Nom:		Prénom:		
		CAP		

ON	-	~	2
2 3/2	.,		TO H.

3 récepteurs couplés en étoile sur un réseau 230/400V - 50Hz

Les caractéristiques des récepteurs:

- Récepteur 1: (branché sur la phase 1) Une bobine R1 =10 Ω L = 0,2H Récepteur 2: (branché sur la phase 2) Un résistor R2 = 50 Ω Récepteur 3: (branché sur la phase 3) Un condensateur C = 100 μ F

ON DEMANDE:	BEP	CAP
1) Déterminer l'impédance et le facteur de puissance de chaque récepteur.		
Z= R2+1Lw2=63,620 Z1=63,6.1		
Cost_= R1 _0,1572 (cost_=0,157)		
Ze=R2=500 Z2=500 Cof2=1	3	3
		İ
Z3 = 1 = 31,83 a \ \(\frac{23 - 31,8 a}{5} \) \(\text{Co}\)_3 = 0		
200		
2) calculer le courant qui circule dans chaque phase.		
· Carron		
$I_1 = \frac{}{24} = 3.616 A$ $I_2 = \frac{}{24} = 4.6 A$ $I_3 = \frac{}{24} = 4.6 A$ $I_4 = \frac{}{24} = 4.6 A$	-	
$\overline{Z_2}$ $\overline{Z_2}$ $\overline{Z_3} = 7,233A$ $\overline{Z_3} = 7,23A$	1,5	1,5
- Ty 233 A		
3) Déterminer la puissance totale perdue par effet joule.		
P+= Pa+ P2 - P3 = Pa+P2		
Pa = Ra In = 151,24 w	<u>-</u>	x
Y1 - Ro II - 1089 11		
WOON = 19 1		
	 	
BEP CAP Note Thème A	/6,5	/4,5
NOTE "EP3" /10 /8 Note Thème B	/3,5	/3,5

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001			
Sujet N° 2A	EP3 -	Application Numérique	Feuille 1/2
Nom: Prénom:			
N° d'inscription:	BEP	CAP	•••••

<u>Thème B: SO3</u> - Circuit parcouru par un courant continu.

ON DONNE: 3 Résistances identiques de caractéristique: 1kW - 230V		
Différents couplages de ces résistances:		
Fig 1 Fig 2 U		
ON DEMANDE:	BEP	CA
1) Colorda la minima di traditione		
1) Calculer la résistance équivalente correspondant au couplage de la Fig 1.		
P= 42 Pag= 3xR=342=158,20	1	
Ra = 159d	0,5	0,
J. A. J.		}
	1	
2) Calculer la résistance équivalente correspondant au couplage de la Fig 2.	Ì	
$l_{3} = \frac{l_{3}}{3} = \frac{12}{30} = 17,63 \text{ a}$		
12 3 3P	1	1
Keg = 17,62		
3) Calculer la puissance absorbée par le groupement Fig 1.		
P= Poque 5° u2 u2 = P = 353,55 W		
hega 302 5	T	1
F P- 333 W	1	1
4) Calculer la puissance absorbée par le groupement Fig 2.		-
P u2 _ u2 3P = 3bm		
1692 42 P-3 km	1	-
3P 1 = 5 km 1	1	1

ACADEMIE DI	E CAEN - BEP et CAP ELECTROTECHNIQU	JE SESSION 200	01
Sujet N° 2A	EP3 - Application Numérique	Feuille 2	/2
Nom:	Prénom:		•
	BEP CAP		

Note Thème B

Thème A: SO7 - Courant alternatif sinusoïdal triphasé.

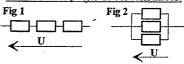
ON DONNE:

3 récepteurs couplés en étoile sur un réseau 230/400V - 50Hz

Les caractéristiques des récepteurs:

- Récepteur 1: (branché sur la phase 1) Une bobine R1 =30 Ω L = 0,2H
- Récepteur 2: (branché sur la phase 2) Un résistor $R2 = 50 \Omega$
- Récepteur 3: (branché sur la phase 3) Une bobine R3 = 20Ω Cos $\varphi = 0.5$

ON DEMANDE:				BEP	CAP
1) Calculer ou déterminerl'impédance et le facte	ur da nui	reamaa			
de chaque récepteur.	ur ue pui	ssunce			
Z,=[R2+Lin==69,626n		. car			
$cos f_1 = \frac{R_1}{2} = 0,434$		7, = 0,4	3.0		
- Tale	C				
Ze=R2=50.0 \ Zz=5	a) [in 12 = 1	$\mathcal{I}_{\mathcal{I}}$		
		an en Pignika	1970 19	2,5	2,5
$\frac{2}{23} = \frac{l_3}{l_3} = 40.0$	·a.) [. Ross . 2. 2. 5	2,5		
Cools -			1		
2) calculer le courant qui circule dans chaque ph	1 <i>05P</i> .				
工,= = 3,3 A	1.=.3,3	<u> </u>			
I2 = 4,4 A	T2 = 4	(A)	••••	1,5	1,5
In = \(\frac{1}{22} = 5,75 A \)		A, £3.(£].			
		•			
3) Calculer les puissances active et réactive cons			· · · · · · · · · · · · · · · · · · ·		
L- R. Ja = 326,7w	F. P. =	327 W		2	х
Q = Laus In = 684, 128 xm	10	- 684	an)		
7/2	1_14				
	BEP	CAP	Note Thème A	/ 6	/4
NOTE "EP3"	/10	/8	Note Thème B	/4	/4

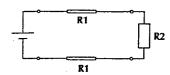

ACADEMIE D	E CAEN	- BEP et CAP ELECTROTECHNIQU	JE SESSION 2001
Sujet N° 2B	EP3 -	Application Numérique	Feuille 1/2
Nom:		Prénom:	
N° d'inscription	BEP	CAP	••••••

Thème B: SO3 - Circuit parcouru par un courant continu.

ON DONNE:

3 Résistances identiques de caractéristique: 1,2kW - 230V

Différents couplages de ces résistances:



← U		
ON DEMANDE:	BEP	CAP
1) Calculer la résistance équivalente correspondant au couplage de la Fig 1.		
$R = \frac{u^2}{R}$ $R = \frac{3R}{R} = \frac{3R^2 - 132 \cdot 25 \cdot 4}{R}$ 2) Calculer la résistance équivalente correspondant au couplage de la Fig 2	1	1
Req 2 = R = 42 = 14, 69 a [leq2=14,7 a]	1	1
3) Calculer la puissance absorbée par le groupement Fig 1.		
P_ u2 _ u2 _ P _ 0,4 Bw [P _ 400 w] Req. 3u2 3	1	1
4) Calculer la puissance absorbée par le groupement Fig 2.		
P= u2 = 3P = 36 bu Reg2	1	1
Note Thème R	1.	

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001				
Sujet N° 2B	EP3 -	Application Numérique	Feuille	2/2
Nom:	•••••	Prénom:		
N° d'inscription:	BEP	CAP	•••••	

Thème A: - Chute de tension en ligne et résistivité d'un conducteur.

ON DONNE:

Par l'intermédiaire d'une source de courant continu de 240 V et d'une ligne bifilaire en cuivre de 85 m (chaque fil), on alimente une résistance chauffante R2 dissipant 3 kW.

On reléve une intensité dans le circuit de 13 A La résistivité du cuivre est 1,6 . 10 $^{-8}\Omega$. m

ON DEMANDE:

1°) La tension aux bornes de la résistance chauffante R2.

$$P2 = U2.1 \Rightarrow U2 = P2 = 3000 = 230,8 \text{ V}$$

BEP CAP

2°) La chute de tension totale en ligne.

$$U1 = U - U2 = 240 V - 230, 8 = 9.2 V$$

3°) La résistance totale de la ligne.

Rt = 2 . R1 =
$$U1 = 9.2 = 0.71 \Omega$$

$$Rt = 0.71 \ \Omega$$

soit R1 = 0,355 Ω

4°) La section de chaque conducteur de la ligne.

$$R1 = \frac{\rho \cdot \ell}{S} \Rightarrow S = \frac{\rho \cdot \ell}{R}$$

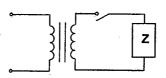
$$S = \frac{1.6.10^{-8} \cdot 85}{0.354} = 3.84.10^{-6} \text{ m}^2$$

 $S = 3.8 \text{ mm}^2$

Note Thème A

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet Nº 3 A


EP3 - Application Numérique

Feuille: 1/2

CORRIGE

Thème B: - Transformateur monophasé.

ON DONNE:

Un transformateur monophasé:

A vide: Tension primaire: 230 V Tension secondaire: 27 V

Puissance absorbée à vide : 9 W

En charge : Tension primaire : 230 V , Intensité primaire : 2,2 A

Tension secondaire: 24 V, Intensité secondaire: 20,8 A

Le secondaire débite dans une charge inductive dont le facteur

de puissance est 0,8.

Résistance du primaire : $R1 = 1,65 \Omega$. Résistance du secondaire : $R2 = 0.04 \Omega$.

ON DEMANDE:

$$m = U2v = 27 = 0,117$$

m = 0.117

2°) Les pertes par effet joule lorsque le transformateur est en charge.

$$Pj = Pj1 + pj2 = R1 \cdot l1^2 + R2 \cdot l2^2$$

$$Pj = 1,65 \times 2,2^2 + 0,04 \times 20,8^2 = 25,3 W$$

 $P_{i} = 25.3 W$

BEP CAL

3°) La puissance active restituée au secondaire.

$$P2 = U2 . 12 . \cos \varphi 2$$

$$P2 = 24 \times 20.8 \times 0.8 = 399.4 \text{ W}$$

P2 = 399.4 W

4°) La puissance absorbée par le primaire lorsque le transformateur est en charge.

$$P1 = P2 + Pj + Pf$$

$$P1 = 399,4 + 25,3 + 9 = 433.7 W$$

P1 = 433.7 W

5°) Le rendement du transformateur.

Note d'application numérique

$$\eta = Pu = P2 = 399.4 = 0.92$$
Pa P1 433.7

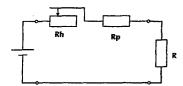
n = 0.92

Note Thème B

Feuille: 2/2

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

/10


CAP

Sujet N° 3 A EP3 - Application Numérique

BEP:

Thème A: - Rhéostat et résistance de protection.

ON DONNE:

Un inducteur de machine à courant continu posséde une résistance de valeur: ${\bf R}={\bf 183}~\Omega$, son intensité nominale est ${\bf In}={\bf 1,2}~{\bf A}$. On dispose d'une source d'alimentation de 240 V .

On souhaite rendre variable l'intensité dans cet inducteur entre ${\bf 0,4~A}$ et ${\bf 0.8~A}$.

ON DEMANDE:

1°) <u>La résistance de protection Rp permettant de limiter l'intensité dans le circuit à 1 max = 0,8 A</u>
(Lorsque le rhéostat Rh est à zéro)

$$U = (Rp + R) \cdot I_{max} \Rightarrow R_p = \frac{U}{I_{max}} - R$$

$$R_{p} = \frac{240}{0.8} - 183 = 117 \Omega$$

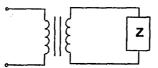
2°) La résistance du rhéostat Rh permettant d'ajuster l'intensité à I min = 0,4 A .

Rh = 300 s

Note Thème A 4 3,5

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet N° 3 B EP3 - Application Numérique


Feuille:1/2

CORRIGE

Thème B: - Transformateur monophasé.

ON DONNE:

BEP CAP

ACADEMIE DE CAEN

Sujet Nº 3 B

Un transformateur monophasé est supposé parfait. Il comporte **1600 spires** au primaire et **920 spires** au secondaire. Le secondaire alimente un dipôle inductif de résistance $R = 39,8 \Omega$ et d'impédance $Z = 53 \Omega$ sous une tension secondaire U2 = 230 V.

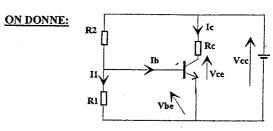
- BEP et CAP ELECTROTECHNIQUE SESSION 2001


Feuille: 2/2

BEP CAP ON DEMANDE: 1°) La tension aux bornes du primaire . $\frac{u_2}{u_4} = \frac{N_2}{N_4} \Rightarrow u_4 = \frac{u_2 \cdot N_4}{N_2} = \frac{230 \times 4600}{a_{20}} = 400 \text{ V}$ U4 = 400 V 2°) L'intensité au secondaire. $T_2 = \frac{u_2}{7} = \frac{230}{52} = 4,34 H$ I2 = 4,34A 3°) L'intensité au primaire $N_1 \cdot I_1 = N_2 \cdot I_2 \Rightarrow I_1 = \frac{N_2 \cdot I_2}{N_4}$ $T_1 = \frac{920 \times 4,34}{4600} = 2,49 A$ 4°) La puissance apparente du transformateur S = U. I. = 400 x 2,5 = 1000 VA S = 1000 VA 5°) Le facteur de puissance du secondaire. $\cos \varphi = \frac{R}{33.8} = 0.75$ 6°) La puissance active absorbée sachant que le transformateur est supposé parfait. Pa=Pu = P1=P2 => Pa= U2. I2. cosy Pa = 230 x 4,34 x 0,75 = 750 W Pa = 750 W 1 0,5 BEP: /10 | CAP: Note d'application numérique : Note Thème B

EP3 - Application Numérique

Thème A: SO11 - Machines tournantes à courant continu.


ON DONNE:	Un moteur à	courant	continu à	excitation	shunt.

<u> </u>		A12			
ON DEMANDE:		4		BEP	CAP
1) Calculer le courant d'excitation.	• . •				
$\dot{L} = \frac{U}{R} = \frac{Ro}{400} = 4\dot{p}\dot{q}\dot{q}$	i=:	1,2 A			_
R 100		A	r top secondo. W Salar	0,5	1
2) Calculer l'intensité du courant absorbé par l'ind	<u>uit.</u>				
I' = I - i = 36,2 - 1,2 = 35A	T	/ = 35A	<u>)</u>	0,5	<u>-</u>
3) Calculer la force contre électromotrice du moteu			The second		
E'= U-rI'= 120-95.85=108,	5.v	E = 10	3 /	<u> </u>	0.5
	Ngjari				0,0
4) Calculer la puissance électromagnétique (ou pu	issance	e électriqu	<u>ie totale)</u>		
Pen = E I = 3.587,5 W					
	?em.=	3600 (<u></u>)	<u>-</u>	0,5
					, o,c
5) Calculer les puissances absorbée et utile.					
Pa=UI = H3khn	[fa	= 4340	n/		
Pu= Pax mg = 3475,2 w	172	3.4.80	- 7	<u>-</u>	1
6) Calcular la couple utile					
1. Pu Pux60	. /m.				
Tu= Pu - Pux60 - 18,461	-77		4	<u> </u>	_
SC 24 n	/.u.=	-11.0,0.0	lm /		x
_			Note Thème A	/6	/ 4
	BEP	CAP	Note Thème B	/4	14
NOTE "EP3"	/10	/8	Hote Hieme D	/4	/ 4

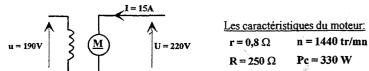
Thème B: SO6 - Les quadripôles.

Les caractéristiques du transistor:

Vbe = 0,65V Ic = 200mA

Vce = 4,8V I1 = 13mA β = 100

Les caractéristiques de la source:

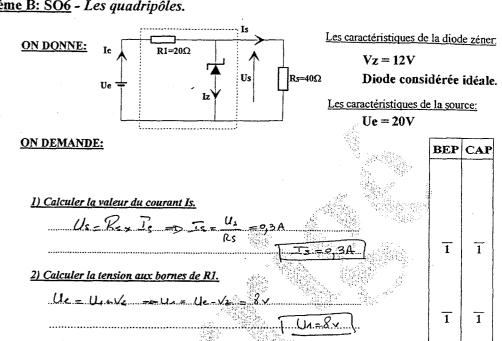

 $V_{cc} = 8V$

ON DEMANDE:	BEP	CAP
1) Calculer la valeur de la résistance Rc. $ Ca = R_c I_c + V_c = R_c I_c + $	1	1
3) Calculer la valeur de la résistance R1. Voy = 065 = 50.0. In 13.16		
[R1=50.n]	1	1
4) Calculer la valeur de la résistance R2. VL4 = R2 I2 + V3 = - R2 (I4+I3) + V3 =		
$R_{2} = \frac{Vee - V_{BE}}{V_{BE}} = \frac{8 - 965}{13 + 2} = \frac{9,9960}{\sqrt{R_{2} - 9900}}$	1	1
Note Thème B	/4	/4

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 20				
Sujet Nº 4A	<i>EP3</i> -	Application Numérique	Feuille	2/2
Nom:		Prénom:	******************	
No d'inscription		CAP		

Thème A: SO11 - Machines tournantes à courant continu.

Un moteur à courant continu à excitation indépendante. ON DONNE:

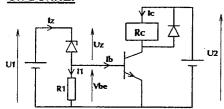


R=250 12 1C=350 W		
ON DEMANDE:	BEP	CAP
1) Calculer le courant d'excitation.		
1= 190 = 0,26A [i=0,26A]	1	1
2) Calculer la force contre électromotrice du moteur.		
E'= U-5 I = 20-08 x 15 = 28 x \(\varepsilon = \frac{1}{208 \times} \)	1	$\frac{1}{1}$
3) Calculer la puissance électromagnétique.		
Jew = 3120W)	1	1
4) Calculer la puissance utile.		
Pu = leu - le = 3120 - 330 = 2790 W Pu = 2790 w	1	1
5) Calculer le couple utile.		
Tu = Pu = PuxCo = 18,5 Na Tu = 18,5 Na	<u></u>	x
6) Calculer le rendement du moteur. Pu = Pu = 0,61	1	x
Note Thème A	/ 6	/4
BEP CAP Note Thème E	/4	/4
NOTE "EP3" 10 8		

CADEMIE	DE CAEN - BEP et 0	CAP ELECTROTECHNIQ	UE SESSION	2001
ujet N° 4B	EP3 - Applica	tion Numérique	Feuille	1/2
Nom:	P1	rénom:		••••
N° d'inscriptio	on: BEP	CAP	••••••	••••

Thème B: SO6 - Les quadripôles.

3) Calculer la valeur du courant le



4) Calculer la valeur	regressions Till statistical boost	 _0,4A			
	<u></u>	 T2=91	<u>A</u>	<u>-</u>	1
			Note Thème B	/4	14

CADEMIE D	E CAEN - BEP et CAP	ELECTROTECHNIQU	JE SESSION 2001
ujet N° 4B	EP3 - Application	n Numérique	Feuille 2/2
Nom:	Préno	m:	••••••
No d'inscription:	BEP	CAP	

Thème A: - Transistor bipolaire et diode zener.

ON DONNE:

Sur un montage à transistor NPN et diode zener permettant l'alimentation d'une bobine de relais au dela d'un certain seuil de tension de source U1.

On releve les grandeurs suivantes :

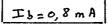
Vbe = 0.6 V

Uz = 5.4 VU2 = 24 V

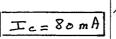
Iz = 3 mAI1 = 2.2 mA

B = 100

 $R1 = 273 \Omega$

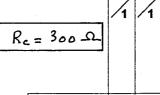

ON DEMANDE:

1°) La tension de la source U1.


$$U_1 = U_{Z+} \lor be$$
 $U_1 = 5,4 + 0,6 = 6 \lor$

BEP CAP

2°) Le courant de base lb.

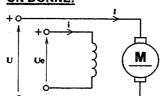

3°) L'intensité du courant circulant dans la bobine du relais

4°) La résistance du relais Rc (si Vce = 0)

$$U_z = R_c \cdot I_c + V_{ce} \Rightarrow R_c = \frac{U_2 - V_{ce}}{I_c}$$

$$R_c = \frac{24}{80 \cdot 10^{-3}} = 300 \Omega$$

Note Thème A


ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet Nº 5 A EP3 - Application Numérique Feuille: 1/2

CORRIGE

Thème B: - Moteur à courant continu

ON DONNE:

Un moteur à courant continu à excitation séparée.

Inducteur : i = 0.8 A Ue = 190 V

I = 12,5 A U = 260 V

Résistance d'induit : $\mathbf{r} = 0.2 \Omega$ Vitesse de l'arbre : n = 1500 tr/mnPertes constantes: Pc = 200 W

ON DEMANDE:

1°) La force contre-electromotrice de l'induit .

$$U = E' + 2 \cdot I \Rightarrow E' = U - 2 \cdot I$$

$$E' = 260 - (0,2.12,5) = 257,5v$$
 $E' = 257,5v$

BEP CAP

2°) La puissance absorbée.

Pa = 3402 w/1/1

3°) La puissance electromagnétique.

4°) La puissance utile.

5°) Le rendement du moteur.

$$y = \frac{\rho_m}{\rho_a} = \frac{3019}{3402} = 0,887$$

6°) Le couple utile sur l'arbre

$$Tu = \frac{Pu}{s} = \frac{Pu}{2\pi n}$$

$$T_{u} = \frac{3019}{2 \cdot \pi \cdot (1500/60)} = 19,2 \text{ mN}$$

Tu =	19,2	1	XXX
	•	il .	

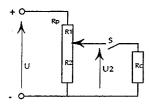
Note d'application numérique :

BEP :

/10 | CAP:

18

Note Thème B


ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet N° 5 A EP3 - Application Numérique

Feuille: 2/2

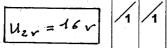
Thème A: - Potentiométre.

ON DONNE:

Un potentiométre de résistance totale ${\bf Rp}=330~\Omega$ est utilisé pour ajuster la tension aux bornes d'une charge de résistance ${\bf Rc}=660~\Omega$.

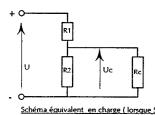
La tension d'alimentation est U = 24 V.

Le curseur du potentiométre est placé au 1/3 de sa course ,


soit: $R1 = 110 \Omega$ et $R2 = 220 \Omega$.

ON DEMANDE:

1°) La tension U2 en sortie du potentiométre lorsqu'il est à vide (interrupteur Souvert).


$$U_{2V} = \frac{R_2}{R_1 + R_2} \cdot U$$

$$U_{2V} = \frac{220}{440 + 220} \times 24 = 46V$$

BEP CAP

2°)La résistance équivalente à Rc placée en dérivation avec R2 lorsque le potentiométre est en charge (interrupteur S fermé).

$$\frac{4}{Re} = \frac{4}{Rz} + \frac{4}{Rc}$$

$$\frac{1}{Re} = \frac{1}{220} + \frac{1}{660} \implies Re = 165 \Omega$$

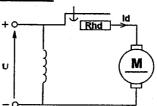
3°)La tension Uc en sortie du potentiométre lorsqu'il est en charge (interrupteur S fermé).

$$U_c = \frac{Re}{R_1 + Re} \cdot U$$

$$U_c = \frac{465}{410 + 165} \times 24 = 44,4 \times$$

Note Thème A

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001


Sujet N° 5 B EP3 - Application Numérique

| Feuille : 1 / 2

CORRIGE

Thème B: - Moteur à courant continu.

ON DONNE:

Un moteur à courant continu à excitation shunt dont les caractéristiques nominales sont les suivantes :

Inducteur: 0,5 A 240 V Induit: 7,3 A 240 V Résistance d'induit: $\mathbf{r} = 1,1 \Omega$ Vitesse de rotation: $\mathbf{n} = 2300 \text{ tr/mn}$ Puissance utile: $\mathbf{Pu} = 1,5 \text{ kW}$

La tension d'alimentation est U = 240 v.

ON DEMANDE:

1°) <u>La résistance du rhéostat de demarrage (Rhd) permettant de limiter l'intensité de démarrage (Id)</u> à 1,5 fois la valeur de l'intensité nominale dans l'induit lors de la mise sous tension .

$$Td = \frac{U}{z + Rhd} \Rightarrow Rhd = \frac{U}{Td} - z$$

$$Rhd = \frac{240}{4,5 \times 7,3} - 4,4$$

Rhd = 20,8 s

BEP CAP

1.5 XXX

2°) La force contre électromotrice de l'induit en régime nominal (Rhd éliminé).

$$U = E' + \Sigma T \Rightarrow E' = U - \Sigma T$$

E'= 232 v /1 /1

3°) La puissance absorbée en régime nominal.

Pa = 1872 w /1 /1

4°) Le rendement .

$$y = \frac{Pu}{Pa} = \frac{1500}{1872} = 0,801$$

5°) Le couple utile sur l'arbre.

$$T_{\text{m}} = \frac{\rho_{\text{m}}}{s_{\text{m}}} = \frac{\rho_{\text{m}}}{2\pi m}$$

$$T_{n} = \frac{1500}{2.77.(2300/60)} = 6,23 \text{ mN}$$

$$T_{u} = 6,23 \text{ m/N}$$
 1,5 1

Note d'application numérique :

BEP: /10

/10 | CAP:

/ 8 N

Note Thème B

ACADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

Sujet N° 5 B

EP3 - Application Numérique

Feuille:2/2

Thème A: SO9 - Machines tournantes à courant alternatif.

ON DONNE: Un moteur asynchrone triphasé couplé en étoile sur un réseau triphasé 230/400V-50Hz absorbe un courant de 25A.

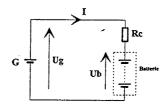
Les caractéristiques nominales du moteur:

Résistance d'un enroulement = 0.25Ω n = 970 tr/mn

Pertes fer = 380W

Pertes mécaniques = 400W

 $Cos\phi = 0,82$


Pjrotor = 401W

ON DEMANDE:							
ON DEMANDE.						BEP	CAP
1) Calculer le glisseme	<u>ent.</u>				<u> y "Har</u>		
9 - 15 -n	_003		10-	3%	<u>)</u>		
<i>v</i> -	•		15	,,,,,		0,5	0,5
2) Calculer la puissanc				aleddin.			
Ya= UIS	- 7 -1420°	s.w	Pa=	142000			_
3) Calculer la puissano	ro norduo nae.	affat ioula de	ine la eta	pice by		0,5	0,5
3) Calculer la puissance G = 3 R 1 ² =	e peraue par i	effet joute at	ins ie siu	<u>w.</u>			
J_ 3RIL-	468,75 26	ج البار المنافعة المستعدد ا					
<i>V</i> -	•		V/5 =	463w)	1	1
				1, 1 1, 1		-	
4) Calculer les pertes j	oules totales	4. Thi	14				
47 Culculer les perles p	outes totales	<i>0</i>)					
JE = Js+ In	= 1/67 + X	01 = 8 /0 W					
4) Calculer les pertes ju	TELEST Control of the control of the		Tr	1_ 87	D.W.	1	1
5) Calculer la puissanc	ro utilo		10		/		
		31					
R_ la_€	perte = 12	الماه س		····			
/ /			I Pu	1260	e.w.)	1	0,5
			·			;	
6) Calculer le rendeme					`		
M = (4/ =	- 0,2836	1	88,	4.%		1	0.5
7) Calculer le couple u		1/			7,	*	0,3
7) Calculer le Couple u	<u>me_</u>	1					
1 = Pux6-		52/2-					
211 ~		ſ	11	124 N	4. 1	<u></u>	х
•••••		·····		1.6.4.10		1	
			BEP	CAP	Note Thème A	/ 6	/ 4
İ	NOTE	"EDA"	,		Note Thème E	/4	/4
	NOTE	"EP3"	/10	/8			

CADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001				
ujet N° 6A	EP3 - Application Numériqu	e Feuille 1/2		
Nom:	Prénom:			
N° d'inscription	: BEP CAP			

Thème B: SO3 - Circuits parcourus par un courant continu.

ON DONNE: Le circuit de charge d'une batterie d'accumulateurs

Les caractéristiques du générateur G:

 $E = 30V - r = 0.02\Omega$

Les caractéristiques de la batterie:

Constituée de 12 éléments en série Chaque élément: $e' = 2V - r' = 0.04\Omega$

ON DEMANDE:	BEP	CAP
1) Calculer la valeur de la FCEM de la batterie E'		
E'= 12e' = 24.		
E = 24V	. /1	/1
2) Calculer la résistance interne de la batterie R'.		
D'-12xr'=0, v2x		
(R'=0,48-2)	/1	/1
3) Calculer la valeur de l'intensité du courant de charge I si Rc=0.		
T = E - E' = 12 A $R + R'$ $(E + R)$		
2+n/ (I-12A)	/2	/2
4) Calculer la valeur de la tension Ub aux bornes de la batterie.		
U8 - E + RI - 29,7 CV		1.
TUB-29,8v	/1	/1
5) Calculer la valeur de la résistance Rc à placer en série dans le circuit		
pour limiter le courant de charge I à 5A.		
UG= ReI + Ub		
Des Us-Ub (E-RI)-(E'+K'I)=0,2a	/1	/1
T Re=02m		
Note Thème R	16	16

ACADEMIE	DE CAEN	- BEP et CAP ELECTROTECHNIQU	JE SESSION	2001
Sujet N° 6A	EP3 -	· Application Numérique	Feuille	2/2
Nom:		Prénom:		
Nº d'inscriptio		$C\Delta P$		

ON DONNE:

ON DONNE:	Un moteur asynchrone triphasé couplé en triangle sur un réseau triphasé 230/400V-50Hz
	absorbe un courant de 25A.
	Les caractéristiques du moteur dans ces conditions de fonctionnement:

Résistance d'un enroulement = 0.2Ω

g lissement = 4%

Pertes fer = 380W

Pertes mécaniques = 400W Pj rotor = 534W

 $Cos\phi = 0.8$

Nombre de pôles 4

ON DEMANDE:			BEP	CAP
1) Calculer la vitesse de rotation du rotor				
f= Mx P -> M = = = 25 h/s	Jugo 21 7:2			
Mr = 08 (1-5) = 1440 M			1	1
2) Calculer la puissance absorbée.		9 19 7 c		
(a=u150)=13656w	Pa = 139E	agui)	0,5	1
3) Calculer la puissance perdue par effet joule da	ns les enroulemen	s du stator.		
J = 3RJ - 12Kw	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = 12$		1	1
4) Calculer les pertes joules totales.	+ PL= 6;	we	7.5	7.5
5) Calculer la puissance attile.	1 0 ,)	0,5	0,5
Pu le - Ept = 12417-w	[] u = 124	(80 03	<u></u>	0.5
6) Calculer le rendement.				,
1 - <u>Pu</u> -0,896	J = 89, [9		1	0,5
7) Calculer le couple utile.			{ 	
The Pux 62 - 82, 422 Ju				
24 1	Tu = 82,2) J.,,	1	x
	·			
•		Note Thème A	/6	/4
NOTE WEEK	BEP CAP	Note Thème B	/4	/4
NOTE "EP3"	/10 /8	<u> </u>		

CADEMIE DE CAEN - BEP et CAP ELECTROTECHNIQUE SESSION 2001

EP3 - Application Numérique

Nom: Prénom: CAP

ujet N° 6B

AP		
1		
1		
1		
0,5		
0,5		
0,5	: ! 	
x		
14		

Feuille 1/2

>	1	<u>Le</u>
G Ug	$Rc = 0.7\Omega$ Ub Batterie	<u>Le</u>

Le circuit de charge d'une batterie d'accumulateurs

Les caractéristiques du générateur G:

 $E = 30V - r = 0.02\Omega$

Les caractéristiques de la batterie:

Constituée de 12 éléments en série Chaque élément: e' = $2V - r' = 0.04\Omega$

ON DEMANDE:	BEP	CAP
1) Colonia in malama da la ECENCIA la la bassa de E		
1) Calculer la valeur de la FCEM de la batterie E' E'- JLe' = tvJ		
E = 24 J		
	0,5	1
2) Calculer la résistance interne de la batterie R'.		
2'=12xr'=0,48a		
(l'= 0,48.e)	0,5	1
3) Calculer la valeur de l'intensité du courant de charge I.		
Z = E = SA R+Ro+Q'		
R+R+L' $I=5R$	<u></u>	<u> </u>
4) Calculer la valeur de la tension Ub aux bornes de la batterie.	_	
Ub = E'+ R'I = 26 4 V		
TUb = 26,4 J	<u>-</u>	1
5) Calculer la puissance dissipée par effet joule dans le circuit.	_	
P1 = P+ x 22 = (r+le+R') 12 = 3w		
(P ₁ =30.w)	1	<u>-</u>
1		
Note Thème B	/4	/4

CADEMII	E DE CAEN	- BEP et CAP ELECTROTECHNIQU	UE SESSION 2001
Sujet N° 6B	<i>EP3</i> -	Application Numérique	Feuille 2/2
Nom:	• • • • • • • • • • • • • • • • • • • •	Prénom:	
		СФР	