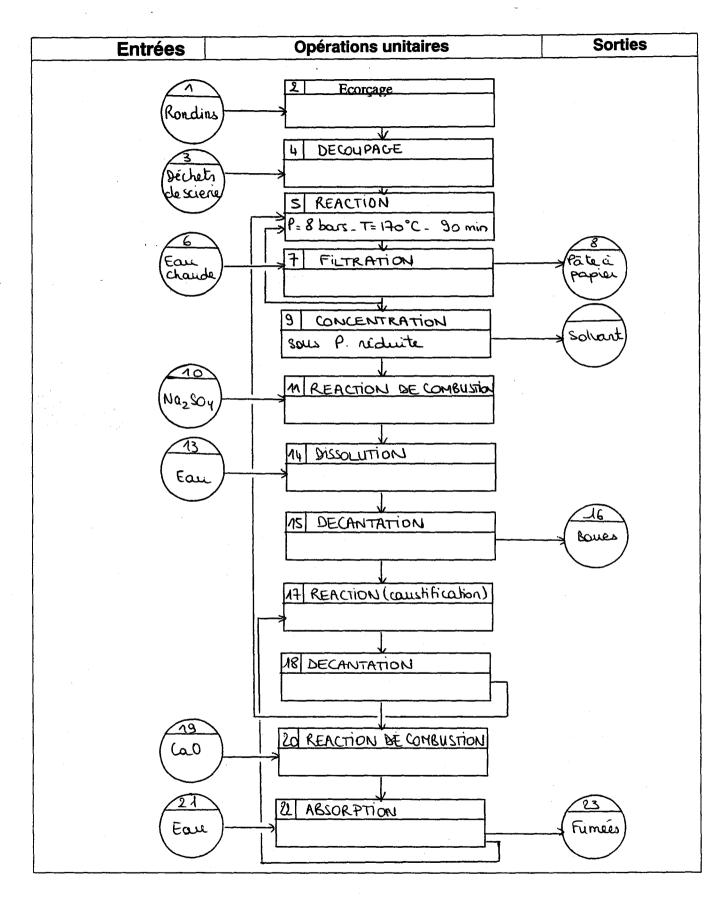
BREVET D'ETUDES PROFESSIONNELLES CERTIFICAT D'APTITUDES PROFESSIONNELLES

INDUSTRIES CHIMIQUES ET TRAITEMENT DES EAUX Dominante Industries chimiques


EPREUVE : EP1 Analyse, Organisation et Communication technique

DUREE EPREUVE: 3H

COEFFICIENT: 4

DOSSIER CORRIGE

B.E.P. Industries Chimiques	
EP1 – Analyse, Organisation et communication Technologique	Page 1/9

B.E.P. Industries Chimiques	
EP1 - Analyse, Organisation et communication Technologique	Page 2 / 9

2) Compléter le tableau d'identification des courants matières d'après la description du procédé page $\mbox{\em 4}$

	Copeaux de pin	CaO	Ca(OH) ₂	CO ₂	CaCO ₃	cendres	Liqueur verte	Liqueur blanche	Liqueur noire
C1	X								
								X	
C2 C3									X
C5									X
C6									X
C 7									X
C8						X			
C9			· ·				X		
C11					X			Х	
C12	-				X				
C13		X		X					
C14			X						

Préciser la composition des liqueurs dans le tableau suivant :

	lignine	Na ₂ CO ₃	Na₂S	NaOH
Liqueur noire	X		X	X
Liqueur blanche			X	X
Liqueur verte		X	X	

REPERE	NOM	Fonction
A5	Réacteur	Cuisson des copeaux de bois
S7	Filtre rotatif	Filtration de la pâte à papier et de liqueur noire
S 22	Colonne de lavage	Transformation de la chaux vive en chaux éteinte.
F11	Chaudière de régénération	Brûler les matières organiques pour obtenir de la vapeur.
A17	Réacteur	Production de soude à partir de Na ₂ CO ₃
S 18	Décanteur	Décantation de la liqueur blanche

B.E.P. Industries Chimiques	
EP1 - Analyse, Organisation et communication Technologique	Page 3 / 9

II) Etude quantitative

• Effectuer le bilan aux bornes du réacteur A 17.

Dans le réacteur A 17, la liqueur verte est transformée en liqueur blanche à l'aide de la chaux éteinte suivant l'équation:

Liqueur

chaux

boues

Verte

éteinte

Données:

Débit volumique de liqueur verte: 70 m³/h

Concentration massique de la liqueur verte en Na₂CO₃: 130 g/L Concentration massique de la liqueur blanche en NaOH: 95 g/L Masse volumique de la liqueur blanche: 1095 kg/m³ à 20°C

Masses molaires atomiques:

Na: 0,023 kg/mol; C: 0,012 kg/mol; O: 0,016 kg/mol;

Ca: 0,040 kg/mol ; H: 0,001 kg/mol.

1- Calculer le débit massique de Na₂CO₃ (en kg/h) à l'entrée du réacteur.

$$Na_{2}CO_{3} + Ca(OH)_{2} \rightarrow$$

2 NaOH +

CaCO₃

0,074

0.040

0,100

$$qm_{Na2CO3} = qv liqueur * C liqueur = 70*10^3*130 *10^3$$

2- Calculer le débit massique de chaux éteinte (en kg/h) à mettre en œuvre pour neutraliser le Na₂CO₃.

D'après l'équation-bilan,

$$qn_{Na2CO3} = qn_{Ca(OH)2} = qm_{Na2CO3} / M_{Na2CO3}$$

= 9100 / 0,106
= 85 849 mol/h

B.E.P. Industries Chimiques			
	,		
EP1 - Analyse, Organisation et communication Technologique		Page 4 / 9	_

donc qm
$$_{Ca(OH)2}$$
 = qn $_{Ca(OH)2}$ * M $_{Ca(OH)2}$ = 85 849 *0,074

= 6353 kg/h

3- Calculer le débit massique (en kg/h) de soude produit.

D'après l'équation bilan:

qm _{Ca(OH)2}

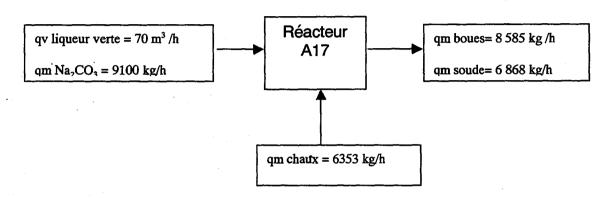
donc qm
$$_{NaOH}$$
 = qn $_{NaOH}$ * M $_{NaOH}$ = 171 698 * 0,040

4- Calculer le débit massique (en kg/h) de boues (CaCO₃) produites.

donc qm
$$_{CaCO3}$$
= qn $_{CaCO3}$ * M $_{CaCO3}$
= 85 849 *0,100

En déduire la production journalière de boues.

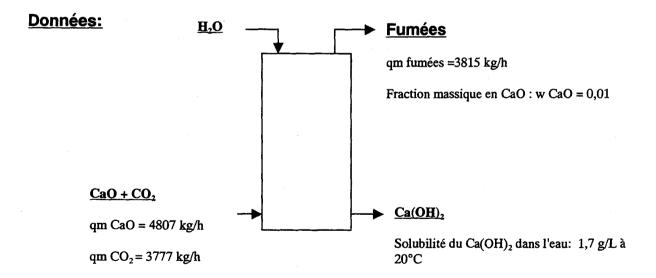
5- Calculer le débit volumique de liqueur blanche (en m³/h).


qv liqueur blanche = qm
$$_{NAOH}$$
 / C_{NAOH} = 6868 / 95 *10⁻³

B.E.P. Industries Chimiques	
EP1 – Analyse, Organisation et communication Technologique	Page 5 / 9

6- Calculer le débit massique de liqueur blanche (en kg/h).

qm liqueur blanche = qv liqueur blanche *
$$\rho$$
 liqueur blanche = 72,3 * 1095


7- Compléter le schéma récapitulatif suivant:

Postako kalenderia kalenderia kalenderia kalenderia kalenderia kalenderia kalenderia kalenderia kalenderia kal

Effectuer le bilan aux bornes de la colonne de lavage S22.

La colonne S22 permet d'hydroliser la chaux vive en pour obtenir de la chaux éteinte selon l'équation:

B.E.P. Industries Chimiques	
EP1 - Analyse, Organisation et communication Technologique	Page 6 / 9

1- Calculer le débit massique de CaO dans les fumées.

2- Calculer le débit massique de CaO ayant réagi.

3- Calculer le débit massique de Ca(OH)2 produit.

CaO +
$$H_2O \rightarrow Ca(OH)_2$$

$$qn_{CaO} = qm_{CaO} / M_{CaO} = qn_{Ca(OH)2}$$

= 4 769,3 / 0,056

$$qn_{CaO} = 85 166 \text{ mol/h} = qn_{Ca(OH)2}$$

$$qm_{Ca(OH)2} = qn_{Ca(OH)2} * M_{Ca(OH)2}$$

= 85 166 *0,074

$$qm_{Ca(OH)2} = 6 302 \text{ kg/h}$$

4- Calculer le débit volumique d'eau introduit dans la colonne.

Solubilité =
$$qm_{Ca(OH)2} / qm_{H2O}$$

Donc qv _{H2O} = qm _{Ca(OH)2} / solubilité
=
$$6302,3 / (1,7 *10^{-3})$$

= $3707 * 10^{3}$ L/h

$$qv_{H2O} = 3707 \text{ m}^3/\text{h}$$

B.E.P. Industries Chimiques	
EP1 - Analyse, Organisation et communication Technologique	Page 7 / 9

III) Hygiène, sécurité et environnement

1- Quelles sont les trois voies de pénétration des produits dans l'organ	isme?
* cutanée* respiratoire (inhalation)* orale (ingestion)	
2- Etude de l'hydroxyde de sodium.	
A l'aide de la fiche produit de l'hydroxyde de sodium et des caractéristic répondre aux questions suivantes.	ques R et S pages ,
Cocher la case correspondante:	
 A 20°C, l'hydroxyde de sodium pur est un produit: 	
Solide X	
Liquide	
Gazeux 🗌	
 A 400°C, l'hydroxyde de sodium pur est un produit: 	
Solide	
Liquide X	
Gazeux	
 A 318,4°C, sous 1 atmosphère, l'hydroxyde de sodium pu 	ır passe:
De l'état solide à l'état liquide X	
De l'état liquide à l'état gazeux	
De l'état solide à l'état gazeux	
3- Parmi les codes R et S suivants entourer ceux relatifs à l'hydroxyde	de sodium:
S4 (\$ 26 \\$ 37/39 \\$ 45)	
R 10 R 29 (R35)	
B.E.P. Industries Chimiques	
EP1 – Analyse, Organisation et communication Technologique	Page 8 / 9

4- Quel symbole doit impérativement figurer sur les récipients de stockage de l'hydroxyde de sodium?

CORROSIF

5- Indiquer les protections individuelles nécessaires pour la manipulation de l'hydroxyde de sodium.

Vêtement de protection, gants, appareil de protection des yeux, du visage (type écran facial).

6- Une erreur de manipulation de l'hydroxyde de sodium provoque la formation de poussières d'hydroxyde de sodium .

Données:

Quantité de NaOH en suspension dans l'air: 158 mg Dimensions du local: longueur L = 5m largeur l= 5m hauteur h = 3 m

a) Déterminer le volume du local.

$$V=1*L*h$$

= 5 * 5 * 3 = 75 m³

b) Est-il dangereux de pénétrer dans le local sans protection individuelle? Justifier la réponse.

Concentration de la soude dans l'atmosphère: C soude= 158 / 75 =2,1 mg/m³

La concentration de la soude dans l'atmosphère est supérieure à la valeur maximal e admise. Il est donc dangereux de pénétrer dans le local sans protection individuelle.

B.E.P. Industries Chimiques	
EP1 – Analyse, Organisation et communication Technologique	Page 9/9