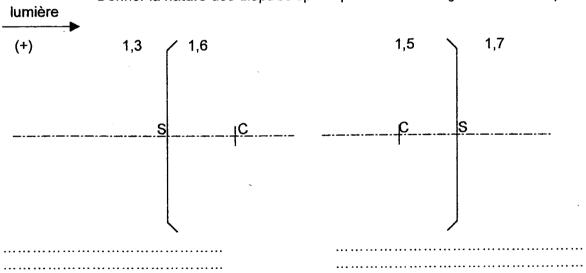

## LES 4 PARTIES SONT INDEPENDANTES

## **PREMIERE PARTIE**


Compléter les symboles des dioptres sphériques suivants et donner leur nature : (justifiez votre réponse),on prendra les indices 1 et 1,5

(2,5 pts)



## **DEUXIEME PARTIE** (2,5 pts)

Donner la nature des dioptres sphériques ci-dessous (justifiez votre réponse):



## **TROISIEME PARTIE** (6 pts)

Soit une lentille épaisse <u>plan-convexe</u> dont ses caractéristiques sont les suivantes :

$$\overline{S_1C_1} = +60 \text{ mm}$$
 ;  $\overline{S_1S_2} = +20 \text{ mm}$  ; d'indice N=1,6

Cette lentille « baigne » dans l'air n = n' = 1

Un objet réel AB de hauteur 3 cm est situé à 7 cm du sommet S<sub>1</sub> de la lentille.

## Calculer:

- 3-1 la puissance et les distances focales de chacun des deux dioptres.
- 3-2 la puissance, les distances focales, la position des plans principaux et l'interstice de cette lentille.
- 3-3 la position et la hauteur de l'image finale, à travers la lentille.

Donner la nature et le sens de cette image.

| Répondre ci-dessous :                  |
|----------------------------------------|
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
| ······································ |
| ,                                      |
|                                        |

| Groupement Académique « Est »      |                       |          | Session 2002 5) 3) 201 50 3) 708 |           | DOC.<br>REPONSE<br>Secteur A :<br>industriel |
|------------------------------------|-----------------------|----------|----------------------------------|-----------|----------------------------------------------|
| BEP OPTIQUE - LUNETTERIE           |                       |          |                                  |           |                                              |
| EP3 – OPTIQUE APPLIQUÉE            | Durée de<br>l'épreuve | BEP : 5H | Coefficient<br>épreuve           | BEP:5     | D / 10                                       |
| Partie EP3 b1) Optique géométrique | Temps<br>conseillé    | 1h       | Coefficient partie               | BEP: 0,75 | Page 1/2                                     |

# QUATRIEME PARTIE (4 pts)

Soit un système optique composé de deux lentilles minces,

Déterminer graphiquement sur le dessin ci-contre à gauche, les points focaux F et F' et les plans principaux [H] et [H'].

کیا ا

| Groupement Académique « Est »      |                       |          | Session 2002           |           | DOC.<br>REPONSE        |
|------------------------------------|-----------------------|----------|------------------------|-----------|------------------------|
| BEP OPTIQUE - LUNETTERIE           | 513,701<br>5031208    |          |                        |           | Secteur A : industriel |
| EP3 – OPTIQUE APPLIQUÉE            | Durée de<br>l'épreuve | BEP : 5H | Coefficient<br>épreuve | BEP:5     | D #16                  |
| Partie EP3 b1) Optique géométrique | Temps<br>conseillé    | 1h       | Coefficient partie     | BEP: 0,75 | Page 2/2               |