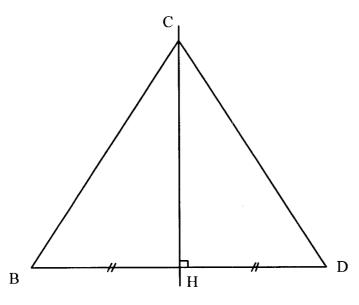
CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGÉ

Mathématiques


Exercice 1: (6 points)

① Aire (ABD) = AB x AD : $2 = 25.2 \times 18.9 : 2 = 476.28 : 2 = 238.14$. L'aire du triangle ABD est de 238 m². 1 pt

② Dans le triangle BCD, BC = BD, donc le triangle BCD est isocèle en C.

1 pt

3

0,5 pt

① Le triangle BCD est isocèle en C, donc la hauteur issue de C est aussi médiatrice du triangle et donc H est le milieu de [BD].

1 pt

Dans le triangle BCH rectangle en H, on sait que :

$$BC = 28.7$$
 et $BH = BD/2 = 31.5/2 = 15.75$.

D'après le théorème de Pythagore, $BC^2 = BH^2 + CH^2$.

d'où
$$CH^2 = BC^2 - BH^2$$

 $CH^2 = 28,7^2 - 15,75^2$
 $CH^2 = 823,69 - 248,0625$
 $CH^2 = 575,6275$

1,5 pt

d'où $CH \approx 24,0 \text{ m}$

⑤ Aire (BCD) = BD x CH : $2 = 31.5 \times 24.0 : 2 = 756 : 2 = 378$ L'aire du triangle BCD est de 378 m².

0.5 pt

⑥ Aire totale du terrain = Aire (ABD) + Aire (BCD) = 238 + 378 = 616. L'aire totale du terrain est de 616 m². Ce résultat correspond avec celui donné en début d'exercice.

0.5 pt

Groupement inter académique II	Session 2002	Facultatif : code
Examen et spécialité CAP Secteur 2 : Bâtiment		
Intitulé de l'épreuve Mathématiques et Sciences Physiques		
CORRI	GE	N° de page sur total 1/3

Exercice 2: (4 points)

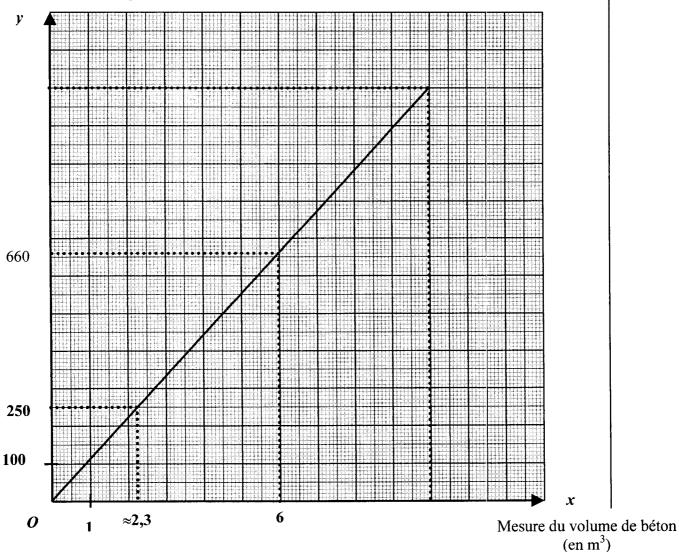
1

Volume de béton (en m³)	0	1	4	7	8	10
Masse de ciment (en kg)	0	110	440	770	880	1100

2 pts

② Voir graphique

1 pt


③ a) D'après le graphique, on constate que pour préparer 6 m³ de béton, il faut 660 kg de ciment.

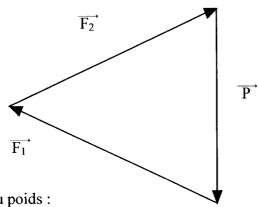
0,5 pt

b) Avec 250 kg de ciment on peut préparer environ 2,3 m³ de béton.

0,5 pt

Mesure de la masse de ciment (en kg)

CAP Secteur 2 : Bâtiment	2002	Rappel code :	
Mathématiques et Sciences Physiques	CORRIGE	2/3	İ


Sciences-physiques

Exercice 3: (4 points)

Force	Point d'application	Droite d'action	Sens	Valeur en newton	Représentat ion
Poids	G		+		P
F _{Câble (1)} / vélo	A	65°		152,5 N	$\overrightarrow{\mathrm{F_1}}$
F _{Câble (2)} / vélo	В	25°	7	152,5 N	$\overrightarrow{\mathrm{F_2}}$

1,5 pt

2

1,5 pt

Calcul de l'intensité du poids :

Le vecteur a une longueur de 5,2 cm donc $P = 5,2 \times 25 = 130 \text{ N}$

③ $P = m \times g$, d'où m = P / g donc m = 130 / 10 = 13. Le vélo a une masse de 13 kg. 1 pt

Exercice 4: (4 points)

① E = 616,21 - 615,79 = 0,42 kWh1 kWh = 3 600 000 J donc $E = 0,42 \times 3$ 600 000 = 1 512 000 J. L'énergie E consommée par le mini-four est de 0,42 Wh soit 1 512 000 J

1,5 pt

② P = E / t. Ici $t = 10 \times 60 = 600$ s donc P = 1512000 / 600 = 2520 La puissance de ce mini four est de 2520 W.

1,5 pt

P = U × I d'où P = 220 × 16 = 3 520.
 La puissance maximale du mini-four est de 3 520 W.

1 pt

Exercice 5: (2 points)

0,5 pt

① L'aspirine est une molécule car elle est constituée de plusieurs atomes.

1,5 pt

② Une molécule d'aspirine contient 9 atomes de carbone, 8 atomes d'hydrogène et 4 atomes d'oxygène.

BEP Secteur 2 : Bâtiment	2002	Rappel code :
Mathématiques et Sciences Physiques	CORRIGE	3/3