Session 2003	Page 1/2
EXAMEN: Diplôme d'Expert Automobile	Durée : 2h00
SOUS - EPREUVE : Sciences physiques	Coef: 0,5

L'usage de la calculatrice est autorisé (circulaire n°99-186 du 16/11/1999) Le sujet comporte trois parties indépendantes.

Exercice n°1: Thermodynamique. (8 points)

On propose la modélisation suivante de l'habitacle d'une voiture :

	Vitres	Parois non vitrées
Surface [m ²]	3	6
Epaisseur [mm]	4	20
Conductibilité thermique [W.m ⁻¹ .°C ⁻¹]	0,8	0,04

La puissance échangée P entre deux milieux en régime permanent est donnée par la relation de Fourier :

$$\mathbf{P} = \frac{\mathbf{S} \cdot \Delta \theta}{\mathbf{R}}$$

Avec

■ P exprimé en W,

• S: surface d'échange de chaleur exprimé en m²,

• $\Delta\theta = |\theta_2 - \theta_1|$: différence de température entre les deux faces du matériau en °C,

• e : épaisseur du matériau exprimée en m,

■ k : conductibilité thermique exprimée en W.m⁻¹.°C⁻¹.

■ $\mathbf{R} = \frac{\mathbf{e}}{\mathbf{k}}$: résistance thermique exprimée en m².°C.W⁻¹.

On chauffe l'intérieur de l'habitacle. On mesure une différence de température $\Delta\theta_v$ de 1,2°C entre deux faces des vitres. La différence de température $\Delta\theta_{nv}$ entre deux faces des parois non vitrées est alors de 12°C.

- 1- Calculer la résistance thermique $\mathbf{R}_{\mathbf{v}}$ des vitres et la résistance thermique $\mathbf{R}_{\mathbf{n}\mathbf{v}}$ des parois non vitrées du véhicule.
- 2- Calculer la puissance P_v dissipée à travers les vitres.
- 3- Calculer la puissance P_{nv} dissipée à travers les parois non vitrées du véhicule.
- 4- Calculer la puissance P_t de chauffe nécessaire pour conserver une température constante dans le véhicule malgré les pertes thermiques.
- 5- Quel est le pourcentage des pertes calorifiques par les vitres ?

Session 2003	Page 2/2
EXAMEN: Diplôme d'Expert Automobile	Durée : 2h00
SOUS - EPREUVE : Sciences physiques	Coef: 0,5

Exercice n°2: Mécanique. (12 points)

Le problème porte sur l'étude de quelques performances d'un véhicule de type diesel à traction avant (deux roues motrices). Les objectifs de cette étude sont :

- Déterminer la puissance du moteur à la vitesse maximale.
- Déterminer la pente maximale que peut gravir le véhicule.

Détermination de la puissance du moteur à la vitesse maximale

Le véhicule roule à la vitesse maximale et constante sur une route rectiligne et horizontale. L'intensité de la force motrice aux roues est $F_{mr}=1000\ N$. Les forces de résistance à l'avancement exercées sur le véhicule sont :

- la force de résistance aérodynamique : $f_a = 0.39 \text{ V}^2$ avec V: vitesse du véhicule en m/s,
- la force de résistance au roulement : $f_r = 180$ N. Cette force agit horizontalement.
 - 1- En utilisant le principe fondamental de la dynamique en projection suivant le sens du mouvement, déterminer l'intensité f_a de la force aérodynamique.
 - 2- En déduire que la vitesse maximale V_M du véhicule est de 165 km.h⁻¹.
 - 3- Déterminer la puissance motrice aux roues P_{mr} .
 - 4- Pour la vitesse maximale 165 km/h, si le rendement η de l'ensemble boîte de vitesse transmission est de 90%, calculer la puissance P_{fm} fournie par le moteur.