SUJET

Vous écrirez directement vos réponses aux emplacements prévus.

Ce sujet comporte 5 pages.

Vous devez remettre la totalité du document à la fin de l'épreuve, sans en détacher aucune page.

Celui-ci sera inséré dans la copie d'examen qui vous sera remise.

CALCULATRICE AUTORISÉE

BREVET PROFESSIONNEL CUISINIER					
Épreuve : <i>U.42</i>					
	Session	N° d'anonymat	N° d'anonymat :		
Examen et spécialité : BREVET PROFES	SSIONNEL CUISINIER				
Intitulé de l'épreuve : Sciences Physique	ues				
Nom et prénom :	Dui 2 he		Feuille n° 1/5		

EXERCICE 1 (8 points)

Données:

Masses molaires : M(C) = 12 g/molVolume molaire : V = 24.0 L/mol. M(H) = 1 g/molM(O) = 16 g/molEn chimie les alcanes s'écrivent sous forme C_nH_{2n+2} Le butane est un alcane où n = 4. 1. Écrire la formule brute et la formule semi-développée du butane. 2. Calculer la masse molaire moléculaire du butane. 3. Une cartouche « camping gaz » contient 190 g de butane. Calculer le nombre de moles de butane contenues dans cette cartouche (arrondir à 0,01). 4. La combustion du butane dans le dioxygène de l'air donne du dioxyde de carbone et de l'eau. Écrire et équilibrer l'équation de cette combustion complète. **BREVET PROFESSIONNEL CUISINIER** Feuille n° 2/5 Épreuve : U.42 - Sciences Physiques Ne rien inscrire dans cette partie

5. Calculer, en litre, le volume de dioxygène nécessaire à la combustion complète cartouche (arrondir le résultat à l'unité).	e du gaz contenu dans cette
6. Calculer, en gramme, la masse d'eau formée lors de la combustion complète cartouche (arrondir le résultat à 0,1).	du gaz contenu dans cette
Un mauvais réglage du brûleur (arrivée d'air insuffisante) favorise la formation carbone (CO) en plus des produits de combustion classiques. Dans ces conditions, 1 seulement 6 moles de dioxygène.	d'un peu de monoxyde de l mole de butane réagit avec
7. Écrire et équilibrer cette nouvelle équation bilan.	
8. Indiquer au moins une conséquence de l'utilisation d'un tel brûleur.	
DDEVER DDOEDGGYONNEL GYRGYNYDD	
BREVET PROFESSIONNEL CUISINIER Épreuve : U.42 – Sciences Physiques	Feuille n° 3/5
Ne rien inscrire dans cette partie	

EXERCICE 2 (12 points)

Données:

$$P = U.I$$

$$P = R.I^2 = \frac{U^2}{R}$$

$$E = P.t \qquad Q = m \times c \times (T_f - T_i)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$J \quad kg \quad J/(kg, C) \quad C$$

Capacité thermique massique du potage : c_{Potage} = 3 900 J/(kg. °C)

$$1 \text{ Wh} = 3 600 \text{ J}$$

I – Étude d'une table de cuisson électrique.

La table de cuisson comprend 4 plaques électriques :

- 3 plaques sont d'allure normale,
- 1 plaque correspond au chauffage rapide.

4 thermostats à 6 positions chacun commandent le réglage de la puissance.

Le fabricant fournit le tableau des caractéristiques électriques suivant pour une tension d'alimentation de 230 V

		Pla	aque (allu	ire norma	ale)]2	laque (al	lure rapid	le)	
	Position du thermostat											
Caractéristiques	1	2	3	4	5	6	1	2	3	4	5	6
Puissance (à 1 W près)	100	180	250	500	750	1000	$\mathbf{P}_{\mathbf{i}}$	300	P ₃	1000	1400	2034
Intensité (à 0,01 A près)	0,43	I ₂	1,09	2,17	3,26	4,35	0,87	1,30	I 3	4,35	6,09	8,8
Résistance (à 1 Ω près)	535	295	R ₃	106	71	59	264	177	113	53	38	26

1.	1. Nommer l'appareil de mesure de la tension et indiquer son mode de branchement.					
 2.	Deux plaques (allure normale) sont réglées en position 5 et la plaque (allure rapide) en position 4. Déterminer, dans ces conditions, l'intensité du courant débité par la prise de courant.					
 3.	Déterminer l'intensité débitée par la prise de courant dans le cas ou les quatre plaques sont réglées en position maximale.					

	Feuille n° 4/5
Épreuve : <i>U.42 – Sciences Physiques</i>	redille if 4/3

Ne rien inscrire dans cette partie

4. La table de cuisson est sécurisée par un fusible. Parmi les fusibles : 10 A, 16 A, 20 A et 3 qui est le mieux adapté pour protéger la table de cuisson. Justifier votre choix.	2 A, indiquer celui
5. Calculer, en Wh, l'énergie thermique produite en 15 minutes par la plaque rapide réglée en	position 4.
6. Calculer la durée de fonctionnement nécessaire à une plaque normale réglée en position 4 énergie de 250 Wh.	pour produire une
7. Calculer en kJ et en Wh l'énergie nécessaire pour élever la température de 3 kg de potage d	de 15°C à 60°C.
8. À l'aide des formules appropriées, calculer les valeurs manquantes des cinq grandeurs indiquées dans le tableau des caractéristiques.	P ₁ , I ₂ , R ₃ , P ₃ et I ₃ ,
BREVET PROFESSIONNEL CUISINIER Épreuve : U.42 – Sciences Physiques	Feuille n° 5/5
Ne rien inscrire dans cette partie	