- Sujet à traiter par les candidats à un BEP seul, en double évaluation BEP/CAP (associés) ou CAP/BEP (semi-associés).
- Les candidats répondront sur la copie. Les annexes éventuelles seront à compléter par les candidats puis agrafées dans la copie anonymée.
- L'usage des calculatrices de poche est autorisé conformément à la circulaire 99-186 du 16/11/1999. Tout échange est interdit.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

LISTE DES SPECIALITES CONCERNEES

- X BEP Agent de maintenance des matériels
- x BEP Carrosserie
- BEP Conduite et service dans le transport routier
- BEP Maintenance de véhicules automobiles opt A, B, C, D (H)
- BEP Maintenance des systèmes mécaniques automatisés
- BEP Métiers de la mode et des industries connexes (3)
- X BEP Microtechniques
 - BEP Mise en œuvre des matériaux, option céramiques
 - BEP Mise en œuvre des matériaux, option matériaux métalliques moulés
 - BEP Mise en œuvre des matériaux, option matériaux textiles
- BEP Mise en œuvre des matériaux, option plastiques et composites
 - BEP Outillages
 - BEP Productique mécanique, option décolletage
- X BEP Productique mécanique, option usinage
- BEP Réalisation d'ouvrages chaudronnés et de structures métalliques
 - BEP Structures métalliques

Groupement interacadémique II	2003					
Examen et spécialité :						
BEP Secteur 1 avec CAP intégrés pour certains.						
Intitulé de l'épreuve :						
MATHEMATIQUES - SCIENCES PHYSIQUES						
SUJET	Durée : 2 h	Page 1 / 8				

FORMULAIRE DE MATHÉMATIOUES

BEP DES SECTEURS INDUSTRIELS

Identités remarquables

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a + b)(a - b) = a^2 - b^2$$

Puissances d'un nombre

$$\overline{(ab)^m = a^m b^m ; a^{m+n} = a^m a^n ; (a^m)^n = a^{mn}}$$

Racines carrées

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
; $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Suites arithmétiques

Terme de rang
$$n : u_n = u_{n-1} + r$$

$$\mathbf{u}_{n} = \mathbf{u}_{1} + (\mathbf{n} - 1)\mathbf{r}$$

Suites géométriques

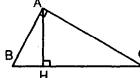
Terme de rang
$$n : u_n = u_{n-1} \cdot q$$

 $u_n = u_1 \cdot q^{n-1}$

$$\mathbf{u}_n = \mathbf{u}_1 \cdot \mathbf{a}^{n-1}$$

Statistiques

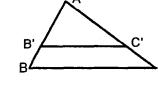
Moyenne
$$\bar{x} = \frac{n_1 x_1 + n_2 x_2 + ... + n_p x_p}{M}$$


Ecart type σ

$$\sigma^{2} = \frac{n_{1}(x_{1} - \overline{x})^{2} + n_{2}(x_{2} - \overline{x})^{2} + \dots + n_{p}(x_{p} - \overline{x})^{2}}{N}$$

$$\sigma^2 = \frac{n_1 x_1^2 + n_2 x_2^2 + \dots + n_p x_p^2}{N} - \overline{x}^2$$

Relations métriques dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

 $AH \times BC = AB \times AC$

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Énoncé de Thalès (relatif au triangle)

Si (BC) // (B'C')
alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Aires dans le plan

Triangle:
$$\frac{1}{2}Bh$$

Parallélogramme: Bh

Trapèze:
$$\frac{1}{2}(B+b)h$$

Disque:
$$\pi R^2$$

Secteur circulaire angle \alpha en degré :

$$\frac{\alpha}{360} \pi R^2$$

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit

d'aire de base B et de hauteur h :

Volume: Bh

Sphère de rayon R:

Aire: $4\pi R^2$

Volume:
$$\frac{4}{3}\pi R^3$$

Cône de révolution ou Pyramide

d'aire de base B et de hauteur h

Volume:
$$\frac{1}{3}Bh$$

Position relative de deux droites

Les droites d'équations y = ax + b et

y = a'x + b' sont:

- parallèles si et seulement si a = a'
- orthogonales si et seulement si aa' = -1

Calcul vectoriel dans le plan

$$\overline{\vec{v}} \begin{vmatrix} x \\ y \\ \vdots \\ \vec{v}' \end{vmatrix} \begin{vmatrix} x' \\ y' \\ \vdots \\ \vec{v} + \vec{v}' \end{vmatrix} x + x' \\ y + y' \\ \vdots \\ \lambda \vec{v} \end{vmatrix} \lambda x$$

Trigonométrie:

$$\cos^2 x + \sin^2 x = 1$$

$$\tan x = \frac{\sin x}{\cos x}$$

Résolution de triangles quelconques

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

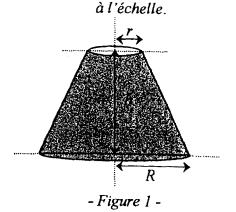

BEP - CAP Secteur 1	SUJET	Session 2003
MATHEMATIQUES - SCIENC	ES PHYSIQUES	Page 2 / 8

Mathématiques

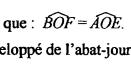
Le thème est commun, mais chaque exercice est indépendant. On se propose de construire un modèle pour un abat-jour de forme tronconique. Cet abat-jour est caractérisé par trois dimensions (voir figure 1):

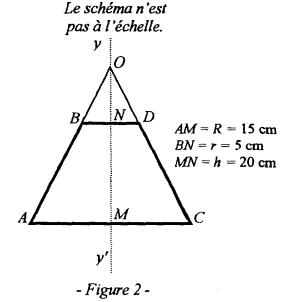
- sa hauteur h
- le rayon de sa base circulaire R
- le rayon de son sommet circulaire r.

Les dimensions de l'abat-jour sont les suivantes : h = 20 cm; R = 15 cm; r = 5 cm.



- 1) <u>Constructions graphiques</u>: réalisation du modèle développé de l'abat-jour (échelle ¼). Sur l'annexe 1:
- a) Construire le segment symétrique de [AB] par rapport à la droite (yy'). On note C le point symétrique de A par rapport à (yy') et D celui de B.
 - b) Tracer les droites (AB) et (CD). On note O le point d'intersection de ces deux droites.
 - c) Placer le point M, milieu du segment [AC].
 - d) Placer le point N, milieu du segment [BD].
- e) Construire un arc de cercle \widehat{AE} de centre O, passant par C et tel que la mesure de \widehat{AOE} soit de 161°.
 - f) Construire un arc de cercle \widehat{BF} de centre O, passant par D et tel que : $\widehat{BOF} = \widehat{AOE}$.
 - g) Tracer le segment [OE]; il passe par F. Hachurer le modèle développé de l'abat-jour.
 - 2) Mesures de longueurs et d'angle.
 - a) Calculer le rapport $\frac{AM}{BN}$.
- b) Soit x la longueur du segment [ON]. Pour déterminer x, résoudre l'équation : 3x = x + 20. En déduire ON en centimètre.
- c) Calculer OB en précisant la propriété utilisée. Arrondir le résultat au centième de cm.
- d) Sachant que OM = 30 cm, calculer la mesure de l'angle \widehat{AOM} (résultat arrondi au dixième de degré).


La relation entre le rayon R de l'abat-jour et son aire A, en cm², est : $A = 2.8 R \sqrt{R^2 + 30^2}$.



BEP - CAP Secteur 1	SUJET	Session 2003
MATHEMATIQUES - SCIENC	Page 3 / 8	

Le dessin n'est pas

- 2) Représenter graphiquement dans le repère de l'annexe 2 les couples de nombres (R; A) du tableau précédent.
 - 3) Tracer la courbe passant par les points obtenus.

Exercice n°3: (BEP: 2 points; CAP: 0,5 points)

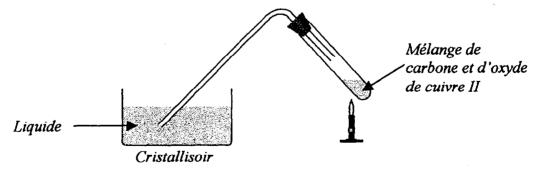
Pour transporter ces abat-jour dans des cartons de forme parallélépipédique (au fond carré de côté égal à 2R), on a choisi de les empiler.

On note u_n la hauteur de n abat-jour empilés.

La hauteur d'un abat-jour est de 20 cm. On note $u_1 = 20$ pour n = 1.

Deux abat-jour empilés ont une hauteur de 22,5 cm. On note $u_2 = 22,5$ pour n = 2.

- 1) Calculer la hauteur correspondant à l'empilement de :
 - a) 3 abat-jour, (n = 3) soit u_3 .
 - b) 4 abat-jour, (n = 4) soit u_4 .
- 2) La suite des nombres u_1 , u_2 , u_3 , u_4 est-elle arithmétique ou géométrique? Justifier la réponse.
- 3) On considère la suite arithmétique de premier terme $u_I = 20$ et de raison r = 2.5.
 - a) Ecrire l'expression de u_n , terme de rang n, de cette suite.
 - b) A partir de cette expression, calculer $n ext{ si } u_n = 105$.
- 4) En déduire le nombre d'abat-jour qui peuvent être empilés verticalement dans un carton d'une hauteur de 1,05 m.


Sciences Physiques

Exercice n°4: Chimie (BEP: 4 points; CAP: 2 points)

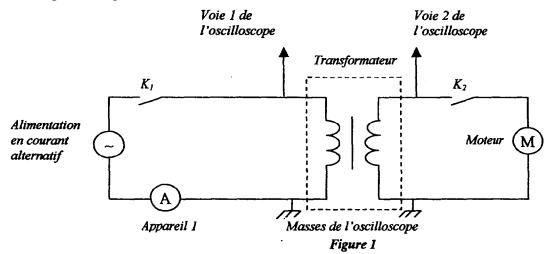
Description de l'expérience concernant l'action du carbone sur l'oxyde de cuivre II. Dans un tube à essai, on fait chauffer un mélange d'oxyde de cuivre II (CuO) et de carbone (C). La couleur de ce mélange est noire.

Après avoir chauffé le tube à essai, on constate que :

- Le liquide placé dans le cristallisoir est troublé par un dégagement de dioxyde de carbone (CO₂).
- Le mélange dans le tube à essai devient rouge : du cuivre (Cu) s'est formé.

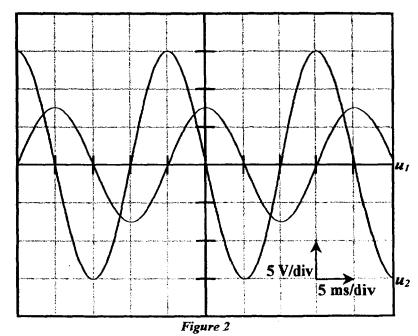
- 1) Citer les réactifs mis en présence dans l'expérience.
- 2) Quels sont les produits formés ?
- 3) Recopier et équilibrer l'équation bilan de cette réaction :CuO +C →CO₂ +Cu

BEP - CAP Secteur 1	SUJET	Session 2003
MATHEMATIQUES - SCIENC	Page 4 / 8	


- 4) Calculer la masse molaire de l'oxyde de cuivre II puis celle du dioxyde de carbone.
- 5) Dans l'expérience, on a utilisé 159 g d'oxyde de cuivre II.
 - a) Quel est le nombre de mole d'oxyde de cuivre II correspondant?
 - b) En déduire la masse de cuivre formée.
 - c) Quel est le volume de dioxyde de carbone dégagé?
- 6) Quel est le nom du liquide (placé dans le cristallisoir) qui a été troublé par le dioxyde de carbone?

Données:
$$M(C) = 12 \text{ g/mol}$$
; $M(O) = 16 \text{ g/mol}$; $M(Cu) = 63.5 \text{ g/mol}$.
 $m = n \times M$ et $V = n \times V_m$

Le volume molaire du gaz dans les conditions de cette expérience est $V_m = 24 L/mol$.


Exercice n°5: Electricité (BEP: 3,5 points; CAP: 5,5 points)

On utilise le dispositif expérimental ci-dessous :

La figure ci contre (figure 2) représente l'écran de l'oscilloscope : u_1 est la tension d'entrée du transformateur (voie 1), u_2 est la tension de sortie (voie 2). Les deux voies sont réglées sur le même calibre 5 V/div et la base de temps est réglée sur 5 ms/div.

- 1) Nommer la grandeur physique que l'appareil 1 (voir *figure 1*) permet de mesurer lorsque l'interrupteur K₁ est fermé.
 - 2) D'après la figure 2, déterminer :
- a) La valeur maximale de la tension u_1 (U_1 max) et celle de la tension u_2 (U_2 max).

b) La période T_1 de la tension u_1 et la période T_2 de la tension u_2 .

BEP - CAP Secteur 1	SUJET	Session 2003	
MATHEMATIQUES - SCIENC	ES PHYSIQUES	Page 5/8	

- 3) En déduire la fréquence d'entrée dans le transformateur (f_1) et celle de sortie (f_2) .
- 4) En comparant $U_{1 \text{ max}}$ et $U_{2 \text{ max}}$, indiquer le rôle de ce transformateur.
- 5) Le transformateur a t-il une influence sur la fréquence ? Justifier la réponse.
- 6) Calculer la valeur efficace de la tension u_1 . Arrondir le résultat à 0,1 Volt.

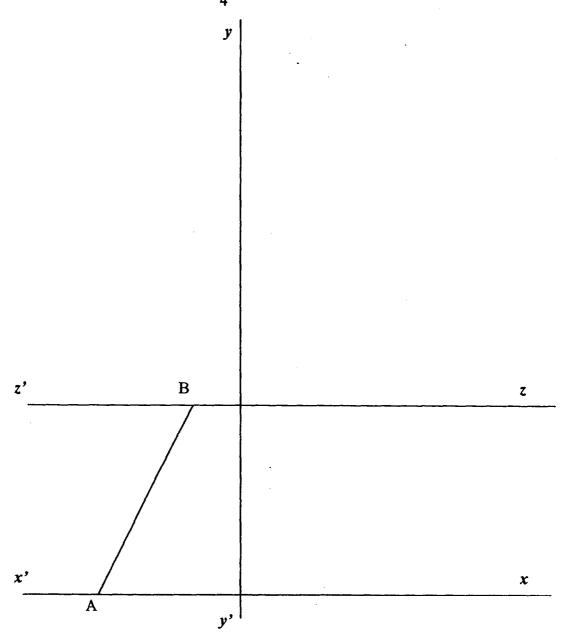
Donnée:
$$U_{\text{max}} = U_{\text{eff}} \times \sqrt{2} \text{ et } f = \frac{1}{T}$$
.

Exercice n°6: Mécanique (BEP: 2,5 points; CAP: 2,5 points)

Un ascenseur est entraîné par un moteur dont la puissance mécanique est de 10 205 W et dont la fréquence de rotation est 1 500 tr/min. Le mouvement de l'ascenseur est assimilé à un mouvement rectiligne uniforme, sa vitesse de montée est de 0,8 m/s et sa masse égale à 1 200 kg.

- 1) Calculer la valeur du poids de l'ascenseur (g = 9.81 N/kg).
- 2) Convertir la vitesse de montée en km/h.
- 3) Calculer le temps mis par une personne prenant l'ascenseur pour monter quatre étages (la hauteur d'un étage est de 3,25 m).
 - 4) Calculer la vitesse angulaire ω du moteur, arrondir à l'unité (en rad/s).
 - 5) Calculer le moment M du couple moteur.

Données:


On rappelle que le moment du couple moteur M est lié à la puissance mécanique fournie P par la relation : $P = M \times \omega$.

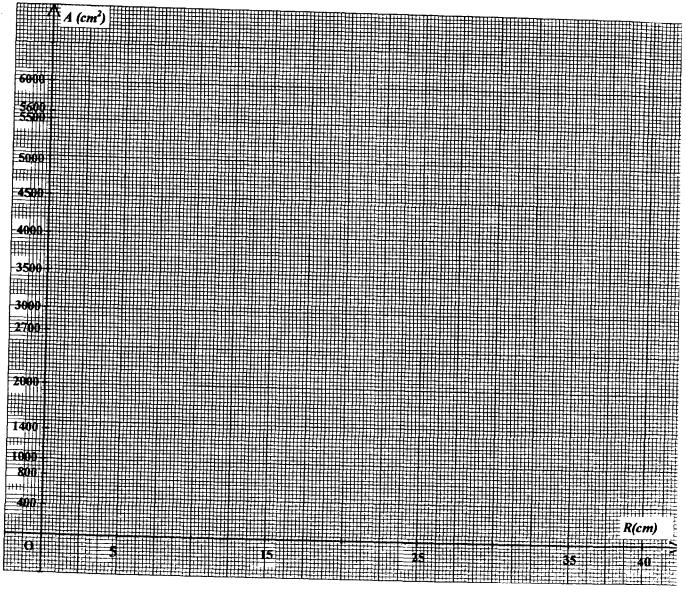
$$\omega = 2\pi N$$

BEP - CAP Secteur 1 SUJET		Session 2003	
MATHEMATIQUES - SCIENC	Page 6 / 8		

Annexe 1 – A remettre avec la copie

Modèle développé de l'abat-jour à l'échelle $\frac{1}{4}$.

BEP - CAP Secteur 1	SUJET	Session 2003
MATHEMATIQUES - SCIENC	Page 7 / 8	


Annexe 2 – A remettre avec la copie

Exercice 2:

1) Tableau de valeurs à compléter :

R (cm)	0	5	10	15	20	25	30	35	40
$A = 2.8 R B$ (cm^2)	0	420		1 428	2 016	2 730	3 528	4 508	5 600

2) et 3) Représentation graphique des couples de nombres (R; A) puis tracé de la courbe passant par les points obtenus.

BEP - CAP Secteur 1	SUJET	Session 2003
MATHEMATIQUES - SCIENCES	PHYSIQUES	Page 8 / 8