BACCALAURÉAT PROFESSIONNEL

CULTURES MARINES

SESSION 2004

ÉPREUVE E2 B2

MATHÉMATIQUES

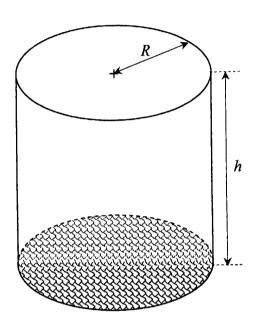
Durée: 1 H Coefficient: 1

Calculatrice à fonctionnement autonome autorisée (circulaire 99-186 du 16.11.99)

MATHÉMATIQUES

EXERCICE 1: (7 points)

Dans une écloserie ostréicole, on fabrique un réservoir cylindrique pour le grossissement des huîtres à l'aide d'un tube P.V.C. et d'un grillage très fin.



On s'intéresse ici à l'aire S des matériaux utilisés pour sa fabrication. On note R le rayon du tube et h sa hauteur.

L'aire S est donnée par la relation : $S = \pi R^2 + 2\pi Rh$. On cherche à déterminer R quand h = 50 cm et S = 23 550 cm².

1. En prenant $\pi = 3,14$, montrer que R est solution de l'équation :

$$3,14R^2 + 314R - 23550 = 0.$$

- 2. Résoudre l'équation : $3{,}14R^2 + 314R 23550 = 0$.
- 3. En déduire la valeur du rayon R.
- 4. L'eau et le naissain remplissent les 9/10 du réservoir. Calculer le volume occupé par l'eau et le naissain.

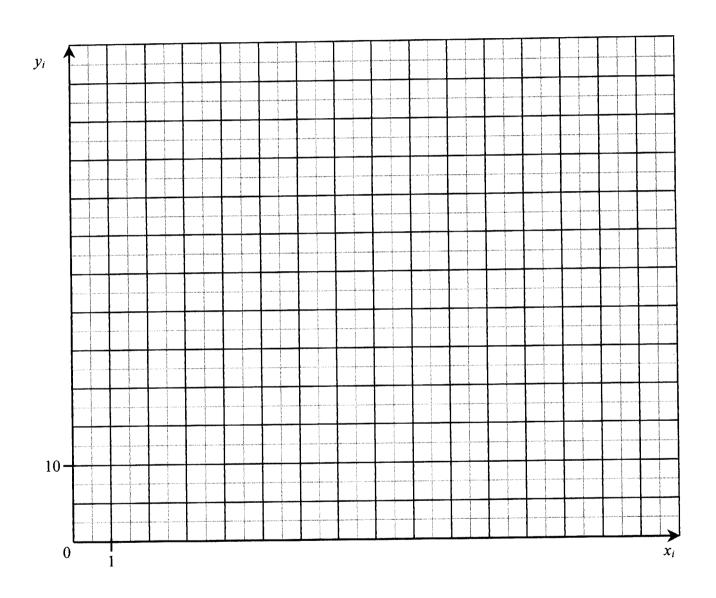
EXERCICE 2: (13 points)

Le tableau ci-dessous récapitule la production, sur la côte atlantique, d'un jeune ostréiculteur qui, sur les dix dernières années, a agrandi son entreprise en achetant de nouveaux parcs et en augmentant son personnel.

Année	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Rang de l'année x_i	1	2	3	4	5	6	7	8	9	10
Production d'huîtres en tonne <i>y</i> _i	20	21,5	23,1	28	31,4	32,1	35	37,4	39,5	42

- 1. Représenter graphiquement dans le repère de l'annexe (à remettre avec la copie) le nuage de points de coordonnées (x_i, y_i) où x_i désigne le numéro de l'année et y_i la production d'huîtres en tonnes.
- 2. Calculer les coordonnées du point moyen G de cette série. Placer le point G sur la figure.
- 3. Placer sur la figure le point A de coordonnées (0; 16). On prendra pour droite d'ajustement affine la droite (AG). Tracer cette droite.
- 4. Montrer que l'équation de la droite (AG) est : y = 2,73x + 16.
- 5. On suppose que la tendance observée se poursuit.
 - a) Calculer une estimation de la production en 2004.
 - b) Déterminer l'année à partir de laquelle la production dépassera 57 tonnes.
- 6. Retrouver les résultats de la question 5. sur le graphique. Les traits de construction devront figurer sur le schéma.

ANNEXE À remettre avec la copie



FORMULAIRE DE MATHÉMATIQUES DU BACCALAURÉAT PROFESSIONNEL Secteur tertiaire

(Arrêté du 9 mai 1995 - BO spécial nº11 du 15 juin 1995)

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
1	$-\frac{1}{2}$
\boldsymbol{x}_{\cdot}	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Equation du second degré $ax^2 + bx + c = 0$

$$\Lambda = h^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si $\Delta < 0$, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Statistiques

Effectif total $N = \sum_{i=1}^{p} n_i$

$$Moyenne \ \overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$$

Exart type $\sigma = \sqrt{V}$

Valeur acquise par une suite d'annuités constantes

 $\overline{V_n}$: valeur acquise au moment du dernier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_n = a \frac{(1+t)^n - 1}{t}$$

Valeur actuelle d'une suite d'annuités constantes

 $\overline{V_0}$: valeur actuelle une période avant le premier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_0 = a \frac{1 - (1+t)^{-n}}{t}$$

Logarithme népérien : ln

(uniquement pour les sections ayant l'alinéa 3 du II)

$$\ln\left(ab\right) = \ln\,a + \ln\,b$$

$$\ln (a^n) = n \ln a$$

$$\ln (a/b) = \ln a - \ln b$$