BAC	PRO:		
		Code:	
Epreuve:.		Session :	
Nom et pré	nom :	N° Candidat nce :	Table N°
Visa du correcte	eur		
Note	/ 20	Epreuve:	

BACCALAUREAT PROFESSIONNEL

INDUSTRIES DE PROCEDES

EPREUVE E2 : ETUDE ET CONDUITE DES OPERATIONS UNITAIRES

DUREE EPREUVE: 4 heures

COEFFICIENT: 3

DOSSIER TRAVAIL

Le dossier comporte 16 pages numérotés dont 8 annexes

Documents à rendre :

Annexe 1	page 09	Longueur droite équivalente
Annexe 2	page 10	Résultats de mécanique des fluides
Annexe 3	page 11	Diagramme de Moody
Annexe 4	page 12	Courbes caractéristiques des pompes
Annexe 5	page 13	Table de la vapeur d'eau
Annexe 6	page 14	Régulation (Synoptique 1)
Annexe 7	page 15	Régulation de l'épaississeur
Annexe 8	page 16	Maintenance (Synoptique 2)

CODE SPECIALITE

FABRICATION DE CHLORURE DE SODIUM

SOMMAIRE ET BAREME

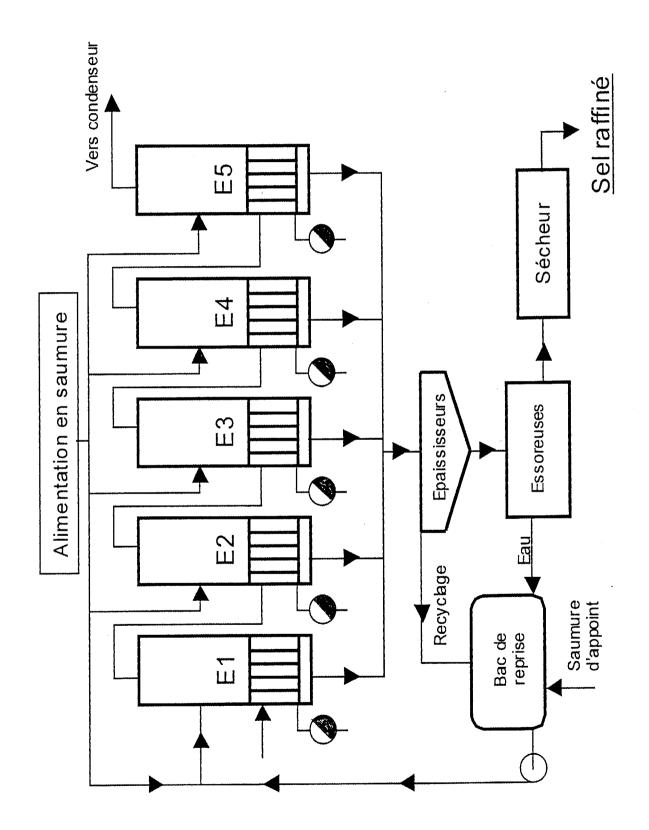
Chacune des parties est indépendante

Partie I	Présentation du procédé	
Partie II	Etude de la pompe alimentant l'évaporateur E1	20 / 60
Partie III	Etude de l'évaporateur E5	20 / 60
Partie IV	Régulation	12 / 60
Partie V	Préparation à une opération de maintenance	8 / 60

FABRICATION DU CHLORURE DE SODIUM

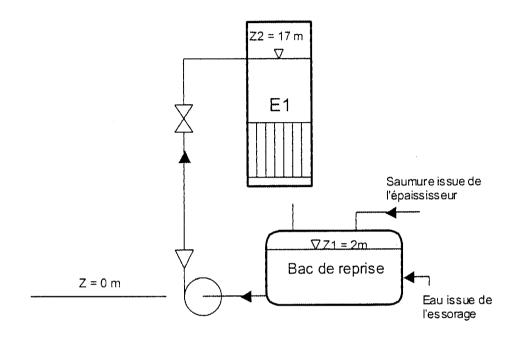
PRESENTATION DU PROCEDE

La production industrielle de chlorure de sodium (sel) est réalisée à partir de saumure (solution saturée de chlorure de sodium) obtenue par injection d'eau sous pression dans des gisements souterrains de sel. L'eau de la saumure est ensuite éliminée par évaporation.


La saumure alimente individuellement un ensemble de 5 évaporateurs à faisceau tubulaire disposés en série. On utilise le procédé d'évaporation par multiple effet.

La saumure contenue dans l'évaporateur E1, appelé premier effet, est chauffée par de la vapeur vive provenant d'une chaudière. La vapeur produite par l'ébullition de la saumure de E1 est utilisée pour chauffer l'évaporateur E2 et ainsi de suite. Un abaissement de la pression effectué sur E5, le dernier évaporateur de la chaîne, entraîne une baisse de pression progressive sur tous les évaporateurs donc une baisse de la température d'ébullition. La vapeur issue de E5 est envoyée dans un condenseur alimenté en eau froide

Pressions et températures d'ébullition de la saumure dans chaque évaporateur


E1	1,65 bar	124°C
E2	0,89 bar	102°C
E3	0,44 bar	86°C
E4	0,22 bar	69°C
E5	0,09 bar	44°C

Le sel cristallise et s'amasse dans la partie inférieure des évaporateurs, d'où il est extrait sous forme de bouillie (suspension constituée d'une solution saturée et de sel cristallisé). Il passe ensuite dans des épaississeurs où le sel décante. La saumure surnageant est recyclée dans les courants d'alimentation. Le sel tombe par gravité dans des essoreuses où l'eau est éjectée par centrifugation. Le sel est enfin séché avant d'être conditionné et expédié.

ETUDE DE LA POMPE ALIMENTANT L'EVAPORATEUR E1

Le bac de reprise reçoit le trop plein de l'épaississeur ainsi que l'eau issue de l'essorage. La saumure obtenue dans le bac est ensuite envoyée dans l'alimentation des évaporateurs par l'intermédiaire d'une pompe centrifuge.

Caractéristiques du fluide (saumure)

Débit volumique	$Q_v = 28 \text{ m}^3/\text{h}$
Masse volumique	$\rho = 1250 \text{ kg/m}^3$
Viscosité dynamique	$\mu = 2.10^{-3} \text{ Pa.s}$

Caractéristique du réseau

Rugosité de la conduite	ε = 0,09 mm
Diamètre de la conduite	100 mm
Longueur de la conduite	30 m

Hauteur du niveau du bac de reprise 2 m Hauteur de l'alimentation de l'évaporateur 17 m

La conduite est équipée des accessoires suivants

- Un clapet anti-retour
- Un coude arrondi 90° rayon moyen
- Un robinet vanne ½ ouvert

Les niveaux des liquides dans la cuve et dans l'évaporateur E1 sont considérés constants.

Pression dans le bac de reprise : Pression atmosphérique = 101300 Pa.

Pression (absolue) dans l'évaporateur (E₁) = 165000 Pa

TRAVAIL DEMANDE

- 1. En utilisant l'abaque donné en <u>annexe 1</u>. Déterminer la longueur droite équivalente aux accessoires sur la canalisation. Remplir le tableau de l'annexe2.
- 2. Déterminer la perte de charge totale du réseau (J) en mètres de colonne de liquide (mCLiq), pour cela utiliser le diagramme de Moody (annexe 3)
- 3. On considère que les vitesses aux niveaux de l'évaporateur et du réservoir sont nulles. Justifier cette hypothèse
- 4. Déterminer la hauteur manométrique totale de la pompe (HMT) en appliquant l'équation de *Bernoulli* entre le niveau du réservoir d'alimentation et le niveau du liquide dans l'évaporateur E1.
- 5. En utilisant les courbes caractéristiques des pompes de <u>l'annexe 4</u> indiquer la pompe la plus adaptée au réseau en précisant le diamètre de la roue. Justifier la réponse donnée.
- 6. Calculer la puissance hydraulique. En déduire le rendement de la pompe à l'aide de la courbe de <u>l'annexe 4</u>.

FORMULAIRE

Perte de charge totale du réseau :

$$J = f \cdot \frac{u^2 (L + Le)}{2g D}$$

Equation de Bernoulli entre les points 1 et 2

$$\frac{u_1^2}{2.g} + \frac{P_1}{\rho g} + z_1 + HMT = \frac{u_2^2}{2.g} + \frac{P_2}{\rho g} + z_2 + J$$

Nombre de Reynolds :

$$Re = \frac{\rho \cdot U \cdot D}{\mu}$$

Puissance hydraulique = Q_v . ρ .g.HMT

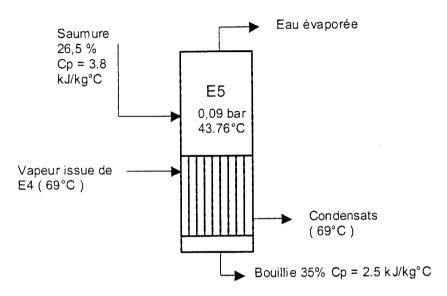
D : Diamètre de la conduite

 μ : Viscosité dynamique en Pa.s

U : Vitesse moyenne du fluide

P: Pression

ρ: Masse volumique


z : Hauteur

 $g = 9.81 \text{ m/s}^2$

HMT : Hauteur manométrique totale de la pompe

ETUDE DE L'EVAPORATEUR E5

L'évaporateur E5 est chauffé à l'aide de la vapeur issue de E4. L'évaporation du solvant s'effectue par l'intermédiaire d'un faisceau tubulaire. La saumure alimente l'évaporateur à un débit de 30 m³/h à 30°C et un titre massique de 26,5%. L'évaporateur fonctionne sous une pression de 0,09 bar absolue permettant l'évaporation de l'eau à la température de 43.76°C. La bouillie est soutirée à la température d'ébullition.

TRAVAIL DEMANDE

- 1. Déterminer le débit d'eau à évaporer afin de concentrer la saumure à 35% de titre massique.
- 2. Déterminer les enthalpies des courants entrant et sortant de l'évaporateur en kJ/kg
- 3. A l'aide d'un bilan enthalpique, vérifier que le débit de vapeur de chauffe nécessaire à l'évaporation est de 2,70 kg/s.
- 4. Tracer le profil des températures de l'évaporateur sur le schéma de l'annexe 7. Déterminer $\Delta\theta_{mi}$
- 5. Sachant que le faisceau tubulaire de l'évaporateur est formé de tubes de 38 mm de diamètre et de 90 cm de long. Déterminer le nombre de tubes nécessaire à l'évaporation.

Données

Annexe 5: Table de la vapeur d'eau

Masse volumique de la saumure = 1250 kg/m³

Coefficient de transfert thermique de l'évaporateur : K = 1,4 kW / m².°C

Flux de chaleur : $\phi = K.S. \Delta\theta mI$

$$\Delta \theta_{ml} = \frac{\Delta \theta l - \Delta \theta 2}{\ln \frac{\Delta \theta l}{\Delta \theta 2}}$$

REGULATION DU DEBIT DE SOUTIRAGE DE L'EPAISSISEUR

Descriptif du synoptique de conduite de l'épaississeur (Annexe 6)

La bouillie issue des évaporateurs est introduite par le haut de l'épaississeur. Afin d'éviter un colmatage de la vanne VR2, on injecte un courant d'eau par la vanne de régulation VR1. Le sel décante au fond de l'épaississeur et la saumure surnageant est expédiée en recyclage par surverse dans le bac de reprise. Le sel tombe dans l'essoreuse P60-2 par gravité.

Le débit de coulage est régulé par VR2. Le sel une fois essoré, ne contient plus que 2,5% d'eau. Il est ensuite envoyé dans le sécheur par la vanne à trois voies VA2. L'eau éjectée par centrifugation est envoyée dans le bac de reprise (Vanne VA3).

La vanne VA4 correspond au circuit de refroidissement du système de graissage.

La régulation du débit de d'eau est assurée par VR1 en proportion avec la concentration de la bouillie.

Le niveau dans l'épaississeur permet de réguler le débit de coulage dirigé vers l'essoreuse.

Lors d'une phase d'arrêt accidentelle, le contenu de l'épaississeur doit être vidangé et l'épaississeur rincé par le débit d'eau ; une séquence de sécurité est assurée au niveau de l'essoreuse pour le traitement de la matière évacuée.

TRAVAIL DEMANDE

1. Désigner le type et décrire le fonctionnement de la boucle de régulation N°1

Boucle fermée simple / à posteriori
Boucle cascade
Boucle de rapport / de proportion
Boucle à échelle partagée / Split-Range
Boucle ouverte / à priori

- 2. Compléter le tableau de l'annexe 7 relatif à la boucle de régulation N°1:
- 3. Représenter symboliquement, sur le schéma de l'annexe 6, la boucle de régulation décrite par le tableau ci-dessous :

N° boucle	Grandeur réglée	Grandeur réglante
2	Niveau dans l'épaississeur	Débit de soutirage du sel

Tous les instruments à installer sont à technologie électrique.

Le régulateur assure aussi la fonction d'enregistreur.

Le transmetteur intégré au capteur assure quant à lui la fonction d'indicateur.

PREPARATION A UNE OPERATION DE MAINTENANCE

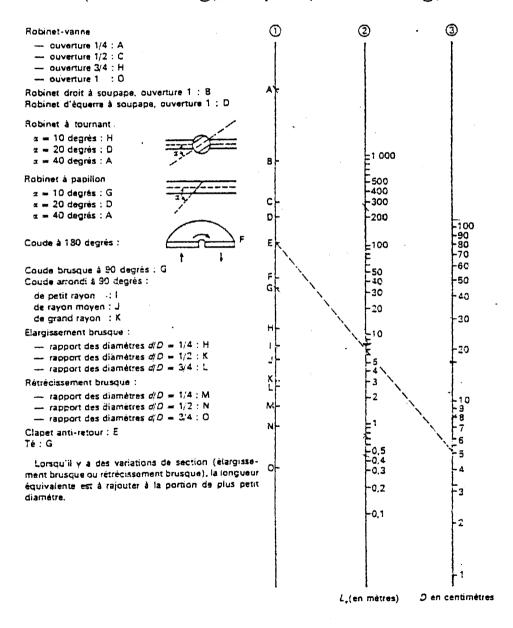
Sur le synoptique de conduite du procédé donné en annexe 8, l'épaississeur est vidé de sa saumure pour subir un lavage car il arrive que la vanne de régulation VR2 se bouche. Sur cette vue, l'essoreuse a été aussi lavée, là, elle se vidange. La vanne VA3, correspondant à la conduite de récupération de l'eau d'essorage est fermée pour que l'eau de lavage aille à l'égout. La vanne VA2 est ouverte de façon à ce que l'eau n'entre pas dans le sécheur.

Le lavage est réalisé grâce à une injection d'eau (mélange d'eau condensée V1 et d'eau du réseau V2.)

TRAVAIL DEMANDE

Compléter le tableau de l'annexe 8 afin de réaliser la procédure à appliquer lors du lavage de VR2, à la vidange de l'épaississeur et à la remise en service de l'installation.

Indiquer pour chaque phase opératoire les vannes ouvertes et fermées. Les premières manœuvres ayant été présentées.


ANNEXE 1 (à rendre avec la copie)

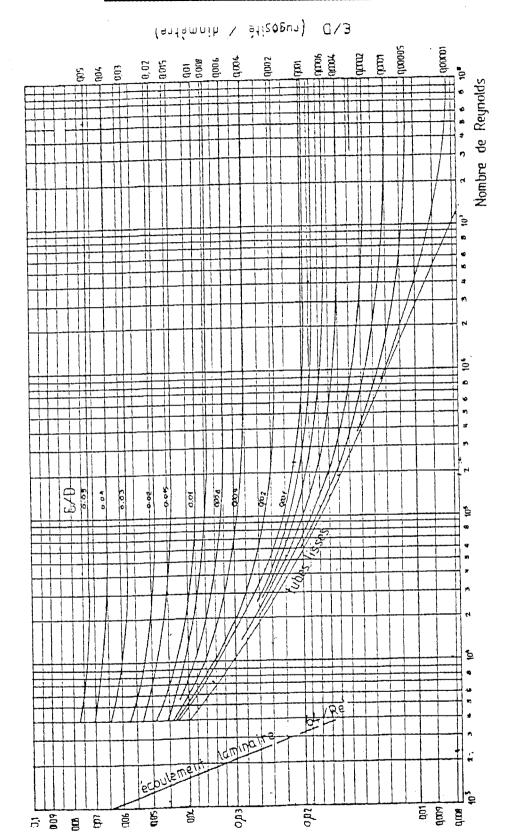
Longueur droite équivalente des "accidents" : Le

Exemple:

Calculer la longueur équivalente d'un clapet anti-retour placé sur une canalisation de 5 cm de diamètre.

On joint le point D=5 cm (sur la droite numéro ③) au point E qui représente le clapet anti-retour (sur la droite numéro ①); on lit $L_r=7$ m (sur la droite numéro ②).

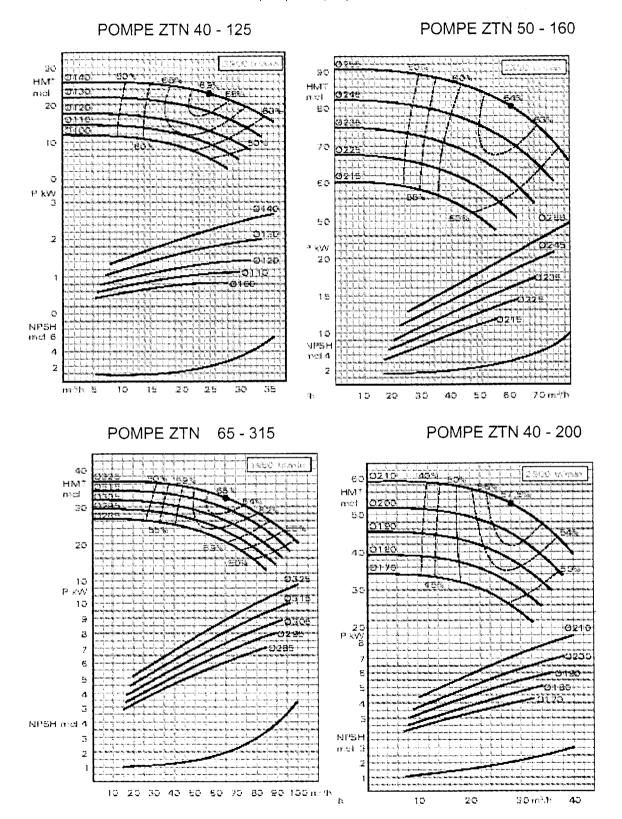
ANNEXE 2 (à rendre avec la copie)


Détermination de la longueur droite équivalente

Elément de tuyauterie	Longueur équivalente	Nombre d'élément	Longueur équivalente totale
Longueur équivalen	L _e =		

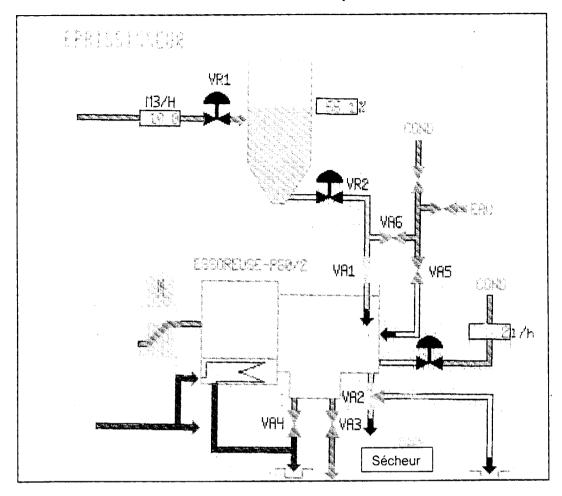
Tableau récapitulatif des résultats

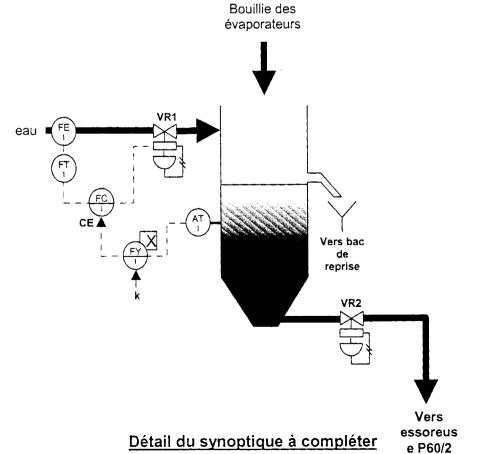
Perte de charge totale du réseau	
Hauteur manométrique de la pompe	
Référence de la pompe la plus adaptée	
Puissance hydraulique	
Rendement	


ANNEXE 3 (à rendre avec la copie)

Coefficient de frottement f

ANNEXE 4 (à rendre avec la copie)

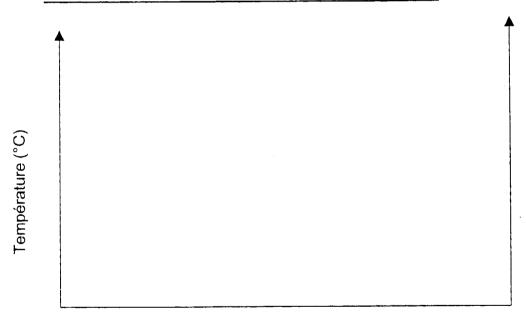

Pour chacune des pompes P (kW) : Puissance absorbée



ANNEXE 5 : TABLE DE LA VAPEUR D'EAU

Pression Température		Enthalpie liquide	Enthalpie vapeur	
(Bar)	(°C)	kJ/kg	kJ/kg	
0.010	6.70	28.215	2508.836	
0.020	17.45	73.150	2528.900	
0.030	24.05	100.278	2541.022	
0.040	29.01	121.387	2549.800	
0.050	32.86	137.438	2556.488	
0.060	36.14	151.107	2562.34	
0.070	38.99	163.020	2567.356	
0.080	41.50	173.470	2571.954	
0.090	43.76	182.916	2575.716	
0.100	45.72	191.235	2579.478	
0.200	60.02	250.841	2604.976	
0.300	69.07	288.670	2620.442	
0.400	75.85	316.927	2631.728	
0.500	81.31	339.750	2640.924	
0.600	85.93	359.271	2648.448	
0.700	89.94	376.032	2654.718	
0.800	93.50	391.248	2660.152	
0.900 96.70		404.540	2665.168	
1.0	99.60	416.662	2669.766	
1.2	104.75	438.314	2677.290	
1.4	109.29	457.334	2684.396	
1.6	113.30	474.304	2690.666	
1.8	116.92	489.603	2695.682	
2.0	120.22	503.564	2700.280	
2.2	123.26	516.23	2704.460	
2.4	126.08	528.352	2708.640	
2.6	128.72	539.638	2712.402	
2.8	131.19	550.506	2715.746	
3	133.48	560.120	2719.09	
4	143.57	603.174	2732.048	
5	151.80	638.704	2742.080	
6	158.80	668.800	2750.440	
7	164.92	695.552	2757.128	
8	170.92	719.378	2762.980	
9	175.33	741.114	2767.996	
10	179.86	761.178	2772.176	
11	184.05	779.570	2775.938	

ANNEXE 6 : SYNOPTIQUE DE CONDUITE DE L'EPAISSISSEUR
A rendre avec la copie



rage 14 sur 16

ANNEXE 7 : REGULATION DE L'EPAISSISSEUR A rendre avec la copie

N° Boucle			Grandeur réglante	Sens de sécurité de l'organe de réglage (OMA / FMA)	Sens d'action du régulateur
1	Grandeur pilote	Grandeur asservie			

PROFIL DES TEMPERATURES DE L'EVAPORATEUR

Longueur du faisceau tubulaire

ANNEXE 8 : SYNOPTIQUE DU LAVAGE DE L'EPAISSISEUR
A rendre avec la copie

Phases Opératoires	Vannes ouvertes		Vannes fermées
Fonctionnement de l'installation (Voir synoptique annexe 4)	VR1 VR2	VA1 VA2 VA3	VA4 VA5 VA6
Arrêt de l'alimentation en bouillie et vidange de l'épaississeur			·
Lavage de VR2			
Vidange de l'eau de lavage (Voir synoptique lavage)			