BACCALAURÉATS PROFESSIONNELS

RESTAURATION ET ALIMENTATION

ÉPREUVE de MATHÉMATIQUES

Ce sujet comporte 7 pages. Les pages 4, 5 et 6 sont à rendre avec votre copie d'examen.

L'usage des instruments de calcul est autorisé conformément à la circulaire 99-186 du 16 novembre 1999.

SUJET

BAC PROFESSIONNEL RESTAURATION

Session : **2004**

Épreuve : E2 : Économie, gestion de l'entreprise et mathématiques

Sous épreuve : B2 Mathématiques Coef : 1 Durée : 1 h 00

Repère: 0409-RESEGMB

Page 1/7

EXERCICE 1: (7 points)

Le tableau suivant donne l'évolution du nombre moyen de repas servis par semaine par le restaurant du camping "Le Curtys" durant l'été 2002.

Semaine x_i	1	2	3	4	5	6	7	8	9
Nombre moyen de repas y_i	10	15	19	27	34	42	46	50	54

On a représenté le nuage de points de coordonnées (x_i, y_i) dans le repère de l'annexe 1. L'abscisse x_i représente les semaines et l'ordonnée y_i le nombre moyen de repas.

- 1. Calculer les coordonnées du point moyen G du nuage et le placer sur le graphique de l'annexe 1.
- 2. On choisit comme droite d'ajustement la droite passant par les points G et A (2 ; 15). Tracer cette droite sur le graphique de l'annexe 1.
- 3. Déterminer l'équation de la droite (GA).
- **4.** On suppose que la tendance observée va se poursuivre. Déterminer alors le nombre moyen de repas servis pour la semaine 12 :
 - a) par le calcul;
 - b) par le graphique (sur l'annexe 1) en laissant apparents les traits de construction.

EXERCICE 2: (9 points)

Le résultat financier du restaurant du camping s'exprime en fonction du nombre x de repas pris par jour, par :

$$R(x) = -x^2 + 90x - 800$$

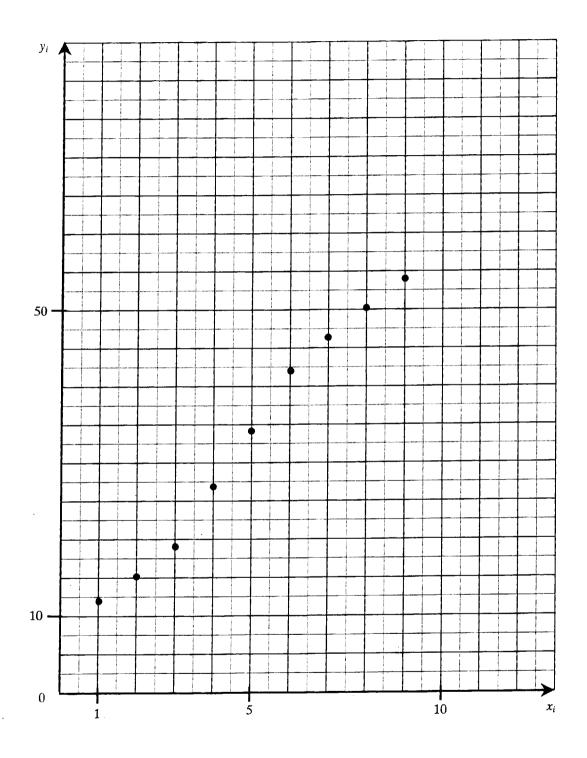
pour x appartenant à l'intervalle [0; 70].

- 1. Compléter le tableau de valeurs sur l'annexe 2.
- 2. Calculer R'(x) où R' désigne la dérivée de la fonction R.
- 3. Étudier le signe de R'(x) pour x appartenant à l'intervalle [0, 70].
- 4. Compléter le tableau de variation de la fonction R sur l'annexe 2.
- 5. Tracer la courbe représentative de la fonction R dans le repère de l'annexe 3.
- 6. a) Pour combien de repas le bénéfice est-il maximum?
 - b) Quelle est alors la valeur de ce bénéfice?
- 7. Á partir de la courbe représentative, déterminer les valeurs de x pour lesquelles le résultat correspond :
 - a) à une perte.
 - b) à un bénéfice.

EXERCICE 3: (4 points)

Le camping "Le Curtys" propose au bar différents types de cocktails :

La table n° 1 prend 5 cocktails "Palmier Océan" et 4 cocktails "Le Curtys" pour une somme de 37 €.


La table n° 2 prend 3 cocktails "Palmier Océan" et 5 cocktails "Le Curtys" pour une somme . de 30 €.

On désigne par x le prix du cocktail "Palmier Océan" et y le prix du cocktail "Le Curtys".

- 1. Donner le système d'équations qui permet de trouver le prix de chaque cocktail.
- 2. Déterminer x et y.

Page 3/7

ANNEXE 1 (À rendre avec la copie)

ANNEXE 2 (À rendre avec la copie)

TABLEAU DE VALEURS

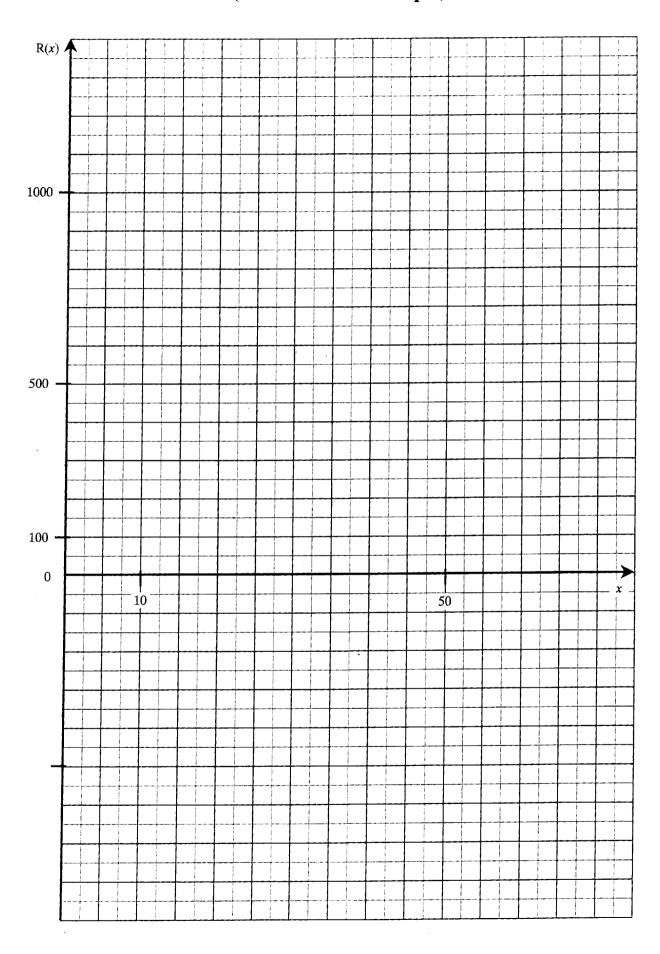

x	0	10	20	40	50	60	70
R(x)	- 800	0		1200		1000	

TABLEAU DE VARIATION

x	0	70
R'(x)	0	
R(x)		

Repère: 0409-RESEGMB Page 5/7

ANNEXE 3 (À rendre avec la copie)

Repère: 0409-RESEGMB Page 6/7

FORMULAIRE DE MATHÉMATIQUES DU BACCALAURÉAT PROFESSIONNEL Secteur tertiaire

(Arrêté du 9 mai 1995 - BO spécial n°11 du 15 juin 1995)

Fonction f	<u>Dérivée</u> f'
f(x)	f'(x)
ax + b	a
x^2	2x
x^3	$3x^2$
<u>1</u>	_ 1_
x	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Equation du second degré $ax^2 + bx + c = 0$ $\Delta = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Exart type
$$\sigma = \sqrt{V}$$

Valeur acquise par une suite d'annuités constantes

 V_n : valeur acquise au moment du dernier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_n = a \, \frac{(1+t)^n - 1}{t}$$

Valeur actuelle d'une suite d'annuités constantes

 V_0 : valeur actuelle une période avant le premier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_0 = a \, \frac{1 - (1 + t)^{-n}}{t}$$

Logarithme népérien : In

(uniquement pour les sections ayant l'alinéa 3 du II)

$$\ln\left(ab\right) = \ln a + \ln b$$

$$\ln\left(a^{n}\right)=n\ln a$$

$$\ln (a/b) = \ln a - \ln b$$