THEATRE DE GRANVILLE

DOSSIER CORRIGE

-	Partie A: DISTRIBUTION ELECTRIQUE BASSE TENSION
	- Sujet (documents à compléter)page 1 et page 2
-	Partie B : ECLAIRAGE DES LOCAUX et CONTRÔLE D'ACCES
	- Sujet (documents à compléter)page 3 à page 5
_	Partie C : MACHINERIE DI ATE-FORME et DODTE ARATTANTE

- Sujet (documents à compléter).....page 6 à page 11

Groupement Inter - Académiqu	ue II Session :	2004	Facultatif : Code
BEP DES MÉTIERS DE L'ÉLE	ECTROTECHNIC	QUE	
EP1 COMMUNICATION TECHNIQU	J E		
CORRIGE	Durée 4 heures	Coefficient 4	1

Partie A: DISTRIBUTION ELECTRIQUE BASSE TENSION

Après lecture du document de présentation DT1, répondez aux questions suivantes :

A1 - Disjoncteur Q1:

Détermination des caractéristiques du disjoncteur Q1 à l'aide du document : DT4.

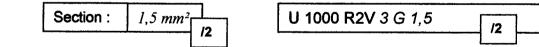
A1.1 – Rechercher sur le schéma la référence du disjoncteur Q1 et déduire de ce schéma le nombre de pôles du disjoncteur.

Référence :		Nomb de pôl	-
NS 400 N	/1	4	/1,5

A1.2 – Identifier à partir des données les principales caractéristiques de ce disjoncteur. – Compléter le tableau ci-dessous (ne rien répondre dans la case hachurée).

/1,5 pts par réponse

Données :	Dénomination :	Symbole:
400 A	Courant assigné ou courant nominal	le ou In
1 A	sensibilité	$I_{\Delta n}$
60 ms	temporisation	


A2 - Câble d'alimentation du départ éclairage zone 1 :

Détermination des caractéristiques de ce départ à l'aide du document : DT4.

A2.1 – Rechercher sur le schéma de la distribution basse tension le repère du disjoncteur protégeant le départ éclairage zone 1 et préciser son calibre.

Repère	Q3_		Calibre :	10 A
		/1		/1

A2. 2 – Déduire de la question précédente la section minimale du conducteur alimentant ce départ et compléter la référence de ce câble multi-conducteurs.

 Préciser la constitution de l'âme conductrice et la nature du métal de l'âme de ce câble (mettre une croix dans les cases correspondantes).

Constitution de l'âme :	Souple	
	Rigide	X
· · · · · · · · · · · · · · · · · · ·	1 	/1,5

		/1,5
Nature du Métal :	Cuivre	X
Métal :	Aluminium	

A3 - Protection des personnes :

Identification et vérification des particularités du schéma de liaison à la terre de cette installation à l'aide du document : DT4 et DT12.

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	Page 1 / 11

A3.1 - Identifier a p schéma le ty										
des lettres.	r <u>T</u>	Signifi	cation	1 ^{ère} L	ettre : T	neutre à la	terre		/2	
<u> </u>	/2			2 ^{ème} l	ettre : T	masses rel	ièes à	la terre	/2	
A3.2 – Déterminer du dispositif	différentiel	à coura	nt résic	luel (Vi	gi MB) s	achant que	e la ter	nsion limite	enchen	
Formule :				Applic	ation nu	ımérique :		Résultat		
$U_{l} = R_{a} I_{\Delta n},$ $(V) (\Omega) (A)$	$I_{\Delta n} = U_{l}$	$/R_a$	/3	$I_{\scriptscriptstyle Z}$	$_{ln}=50$	/40	/2	$I_{\Delta n}=1,.$	25 A /1	
– Déduire du c en (A) du Viç		édent les	s réglag	es pos	sibles	Réglages	s:	0,3 ou 1 A	12	
A3.3 – Identifier la t Liaison à la ⁻ Cocher la ca	Terre.		_		ant de d			e de Schén		
– Préciser la v	Préciser la valeur de cette tension. Valeur de cette tension: 230 V							230 V	/1,5	
 Rechercher of le temps maximum protection à le 	kimal de co	oupure d	lu dispo	sitif de		Temps de maximal	-	0,2 s	/1,5	
– En déduire I Vigi MB (reta temps à pre le temps tota	ard intention ndre en co	nnel) sa mpte po	achant d	que le		Réglages	s :	0 s ou 60 ms	/1,5	
A3.4 – Noter dans le courant résid	es tableaux uel des dis	x ci-dess sjoncteu	sous les rs Q1 e	s caract t Q3 .	éristique	es des disp	ositifs	différentiel	s à	
Disjo	ncteur Amo	nt		· -		Disjo	ncteur	Avai		
	Q1						Q3	23		
Réglage en (A)	Réglage en (A) Réglage en (s)				Régla	ge en (A)	F	Réglage en (s)	
1 A 11] ["	60 ms	/1		0,	,3 A [1 1		nstantané	/1	
- Vérifier si les aux valeurs p effectués sur	roposées	à la que	stion A	3.3. Pré	es du di ciser l'ir	sjoncteur antérêt (pour	mont l'insta	Q1 appartical	ennent s réglaç	
Intérêt des réglages pour	Les rég		e Q1 (1	À et 60	ms) ap	partiennen		valeurs		

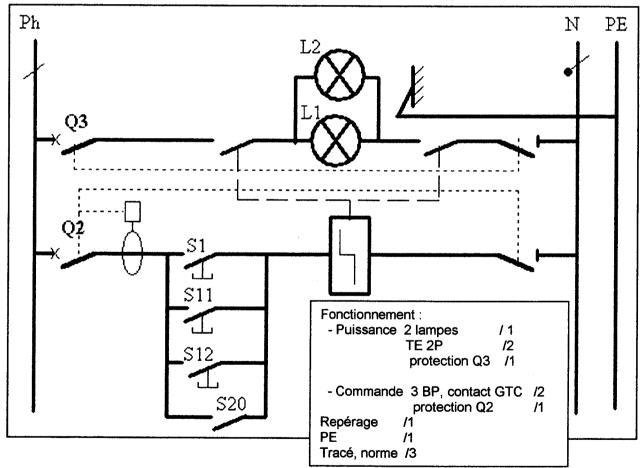
Page 2 / 11

BEP DES MÉTIERS DE L' ÉLECTROTECHNIQUE EP1 COMMUNICATION TECHNIQUE

Partie B : ECLAIRAGE DES LOCAUX et CONTRÔLE D'ACCES

B1 - Eclairage de la zone 1 :

Détermination des caractéristiques de l'éclairage de cette zone à l'aide des documents : DT4, DT5, DT14


B1.1 – Rechercher le repère de l'appareil protégeant entre autres les circuits d'éclairage : Entrée RDC, Escalier, Palier 1 et Etage.

Q3/1

 Préciser le type de montage d'éclairage utilisé. Montage d'éclairage utilisé :

Télérupteur 2 pôles

- B1.2 Etablir le schéma développé de l'éclairage Entrée du RDC à partir des appareils de protection propre à chaque circuit :
 - en représentant les différents appareils (un spot, trois boutons poussoirs, la commande GTC, les appareils de protection présents sur le schéma),
 - en notant le repère des appareils,
 - en respectant la norme concernant les représentations schématiques.

B1.3 – Rechercher si le ballast équipant un spot de marque Mazda de code produit : 658071 00 est compensé ou non-compensé. Mettre une croix dans la case correspondante.

Compensé : Non-compensé : /1

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	Page 3 / 11

– Donner la	signification	du ter	me co	mpensé	ро	ur un lum	ninaire	équipé d'un ball	ast.
Le luminaire le facteur de				-	acé	sur l'ens	emble.	Ce qui permet d	le relever
B1.4 – Recherch	er le code pr	oduit d	les lan	npes en	lun	nière « bı	rillant »	o, à placer dans l	es spots.
	Code :			10	6666	68 70		/1	
						nce (P),	Tensic	on (U), Courant (I) et le Flux
, , , , , , , , , , , , , , , , , , , ,	(Φ) produit par ce type			U		1	· · · · · · · · · · · · · · · · · · ·	Φ	
	18 W	/1	100	V [1		0,2 A	/1	1200 lm 11	1
/7 B1.5 – Calculer le	e flux lumine	ux tota	I (Ф _t) р	roduit p	ar I	'ensemb	le des	spots installés d	ப ans le hall.
	Nombre de	lampe	s	Calcul	du	flux total		Résultat :	
	8x2 = 16		/1	16 x 1	200)	/1	19200 lm	/1
ce cas de			•	1		tion numé		Résultat :	1
rapport en	tre le flux tot							e l'éclairement (l à éclairer (S) qu	
	$E = \Phi$			 		00/60		E = 320 lux	
	$\int E - \mathcal{Q}$ $\int \int \mathcal{Q}(\mathbf{u}x) d\mathbf{m} d\mathbf{r}$		/1		720	,0,00	/1	E - 320 iux	/1
	ı éclairement dante. —		um de				croix	u hall sachant qu dans la case n-conformité :	e la norme
B2 – Contrôle d	<u>d'accès</u>								
Vérification de la électrique à l'aide							de rue	e (audio) et de l	a gâche
		rtir de l	a plati	ne de r	ie. I	Préciser	le nom	le câble alimenta ibre de conducte	
Nombre	de conducteu	ırs :	2	/1		Repère	s:	6 et 24	/2
		ation 3	06000	» et la	«Pl	atine de l	rue». F	Préciser le nomb	
Nombre	de conducteu	ırs :	4	/1		Repèr	es:	1-12-22-2	4
BEP DES MÉTIERS EP1 COMMUNICAT			IQUE					Page 4 / 11	

 Identifier les conductes que celle-ci est aliment cette tension d'aliment 	tée par l' «Alimentatio							
			Valeur :	12 V	/1			
Repères : 22 - 2	?4 12	Tension	Nature :	alternati	if 11			
distance de 75	stallation audio, la sec gâche et l'alimentatio limentation 306000 s mètres de la platine le peut être constitu	n de la plati itué dans le de rue audic	ne de rue s local TGBT o.	achant : se trouve	placé			
		Section n	ninimale:	1 m	m ² [/3		
B2.4 – Rechercher les caractéri	stiques (U g et I g) de la	a gâche élec	ctrique.	Ug	l _g			
			/0,5	12 V	1 A	/0,5		
B2.5 – Calculer pour la section des conducteurs (R _i) du sachant que la résistivité	câble de liaison entre du cuivre vaut : 1,8x	l'alimentation 10 ⁻⁸ Ωm.	on 306000 (
	Résistance des cor	nducteurs : I	₹, 					
Formule :		n numérique			Résultat :			
$R_l = \rho \cdot L/S$ $(\Omega) (\Omega.m)(m) (m^2)$ [12]	$R_l = 2(1, 8.10^{-8})$	×75) / 1×10	/3	$R_l = 1$	$^{2,7\Omega}$	/1		
B2.6 – Calculer la chute de tens de la gâche (on considèr					tionne	ment		
	Chute de tensi	on : Δ U						
Formule :	Application	n numériqu	e:	Résult	at :			
$\Delta U = R_I \times I$ (V) (\Omega) (A) \text{11,5}	ΔU =2,7×	1	/1,5	<i>∆U</i> =	2,7 V			
B2.7 – Déduire de ce calcul la conducteurs sachant que dépasser 4V. Conformité :	e la chute de tension r		our ce circui					
								
BEP DES MÉTIERS DE L'ÉLECTRO								

Page 5 / 11

Partie C: MACHINERIE PLATE-FORME et PORTE ABATTANTE

C1 - Alimentations T.B.T.:

/3

C1.1 – Détermination des caractéristiques de l'alimentation des bobines des contacteurs alimentant le moteur du plateau 1 à l'aide des documents DT6, DT7, DT8, DT13.

/1 C1.11 – Rechercher le repère du transformateur d'alimentation de ce circuit. Repère : TI

C1.12 – Préciser la tension nominale du primaire, la tension nominale du secondaire et la puissance nominale de ce transformateur.

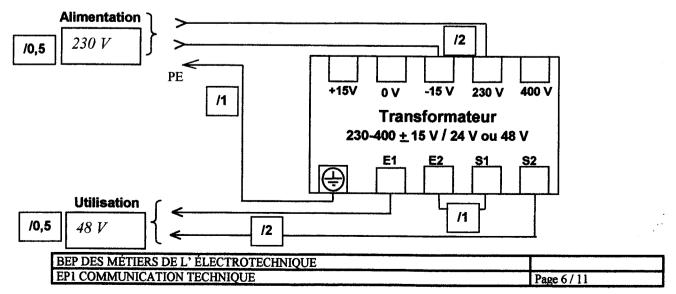
Tension primaire : 230 V

Tension secondaire : 48 V

Puissance nominale : 250 VA

/1

C1.13 – Calculer le courant nominal du primaire I1_n et du secondaire I2_n de ce transformateur.


Formule :	
S = U I $(V.A) (V) (A)$ $I = I$	[11] S/U

Application no	umérique :		Résultat :	
Primaire :	$II_n = 250 / 230$	/1	$I1_n = 1,09 A$	/1
Secondaire :	$I2_n = 250/48$	/1	$I2_n = 5, 2 A$	/1

C1.14 – Rechercher et noter dans le tableau ci-dessous les caractéristiques et les références des disjoncteurs protégeant le primaire et le secondaire de ce transformateur.

	Calibre	Type de Courbe de déclench	nement	Référence	
Primaire :	2 A /0,5	Courbe D	/2	19233	/1
Secondaire :	6 A 10,5	Courbe C	/2	19224	/1

- C1.15 Noter dans les cases prévues à cet effet la valeur des tensions d'alimentation et d'utilisation de ce transformateur (prendre en compte la réponse à la question C1.12).
 - Représenter sur le plan ci-dessous le schéma de raccordement coté primaire de ce transformateur sachant que la tension mesurée est 218 Volts et que le transformateur est prévu pour fonctionner à sa charge nominale.
 - Représenter sur le plan ci-dessous le schéma de raccordement et le couplage des enroulements coté secondaire de ce transformateur.

C1.2 – Détermination	des caractéristiques de	l'alimentation	redressée a	à l'aide	des
documents DT6, DT9,	DT10.				

/3	C1.21 – Rechercher et noter dans la case ci-dessous les différents circuits ou appareils alime	entés

-	Alimentation de l'automate	/1


- Alimentation des entrées automate
- Alimentation des relais auxiliaires pilotés par l'automate

1

/14 C1.22 – Identifier le type de montage redresseur utilisé.

Montage Redresseur utilisé :	Pont de Graëtz ou PD 2	/2	
------------------------------	------------------------	----	--

- Représenter à partir de la tension alternative sinusoïdale d'entrée (V) du redresseur dessinée sur le graphe ci-dessous, l'allure de la tension de sortie $V_2 = f(t)$ du redresseur.
- Noter sur le graphe, la période (T) et la valeur maximale de la tension (V_2). Utiliser les symboles normalisés.

 Déterminer la fréquence et la valeur maximale de la tension de sortie (V₂) du redresseur sachant que les échelles sont pour V : 10 V/division et pour t : 2 ms/division.

Période : T		Fréquence : f		
Application Numé :	Résultat :	Formule :	Application Numé :	Résultat :
$T = 5 \times 2$ Tension ma	T = 10 ms /1 ximale :	F = 1/T (Hz) (Hz)	$F = 1 / (10.10^{-3})$ 11	F = 100 Hz 11
Calcul :	Résultat :			
$V_2 = 3.4 \times 10$ 11	$ \begin{array}{ c c c } \hline & \land \\ V_2 = 34 \ V \\ \hline \end{array} $	/1		

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EPI COMMUNICATION TECHNIQUE	Page 7 / 11

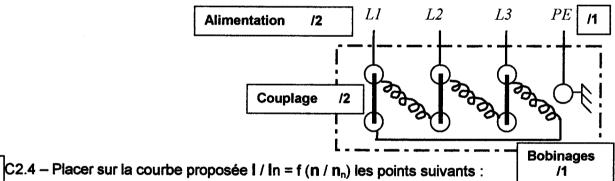
C2 - Motorisation du Plateau 1 :

Vérification du choix des protections du départ moteur à l'aide des documents DT4, DT6, DT7.

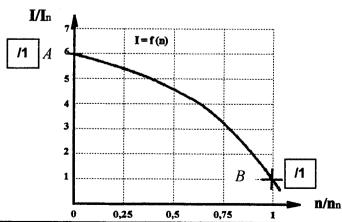
C2.1 - Rechercher la tension du réseau triphasé alimentant le moteur du Plateau 1.

- En déduire le couplage du moteur.

Un du rése	au :	Couplage :	
400 V	/1	Triangle	/3


C2.2 - Calculer la puissance absorbée (Pa) par le moteur.

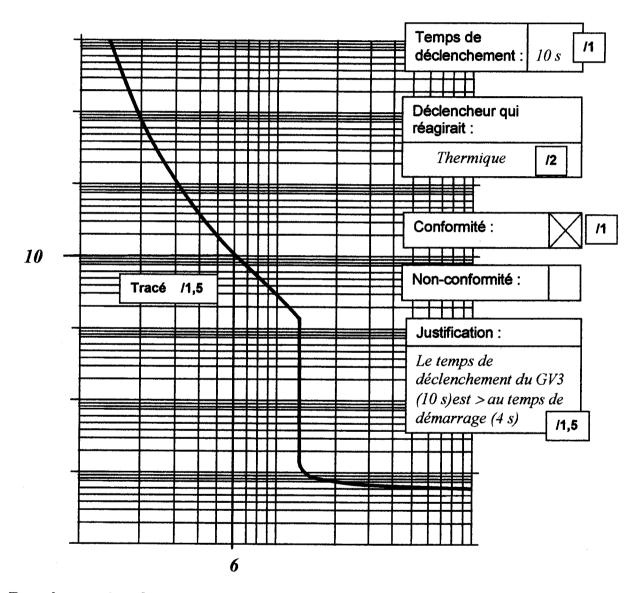
Puissance absorbée par le moteur : Pa			
Formules :		Application numérique :	Résultat :
$ \eta = Pu / Pa $ (W) (W)	$Pa = Pu / \eta$ [12]	Pa = 18500 / 0.9 /1	Pa = 20555 W


- Calculer le courant nominal du moteur.

Courant nominal du moteur : I.				
Formules :	Application numérique :	Résultat :		
$Pa = U . I . \sqrt{3} . \cos \varphi$ [12] $(W) (V) (A) I = Pa / (U . \sqrt{3} . \cos \varphi)$	$I = 20555 / (400 \cdot \sqrt{3} \times 0.8)$ [12]	I = 37 A [1]		

C2.3 – Représenter sur le plan ci-dessous la plaque à bornes moteur avec le repère des bornes, les enroulements, les barrettes de couplage et l'alimentation.

- - Démarrage du moteur (point A)
 - Fonctionnement nominal (point B).
- Calculer la valeur du courant de démarrage : Id.


ld / In au démarrage :		
6	/0,5	

Courant de démarrage : Id		
Application Numé :	Résultat :	
$Id = 6 \times 37$	$Id = \underline{222} A$	
/1	/0,5	

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	Page 8 / 11

- /7
- C2.5 Déterminer à partir de la courbe de déclenchement du disjoncteur proposée ci-dessous le temps de déclenchement de celui-ci pour un courant égal au courant de démarrage du moteur (rapport Id / In au démarrage déterminé à la question précédente) sachant que le disjoncteur est réglé à In du moteur.
 - Exécuter le tracé sur la courbe en trait de couleur ou en trait fort et noter les valeurs en abscisse et ordonnée.
 - Nommer dans ce cas le déclencheur du GV3-M qui réagirait à ce courant.
 - Déduire de ce résultat la conformité ou non-conformité de cette protection, sachant que le démarrage du moteur s'effectue en moins de 4 secondes (mettre une croix dans la case correspondante) et justifier votre réponse.

Courbe de déclenchement des disjoncteurs moteurs GV3-M

<u>C3 – Représentation fonctionnelle du Plateau 1 :</u>

Interprétation et traduction des caractéristiques fonctionnelles du Plateau 1 à l'aide des documents DT7, DT8, DT9, DT10.

C3.1 – Identifier et inscrire le repère du contacteur qui autorise la montée ou la descente du plateau 1.

Contacteur :	KMP1	/2	

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	T
EP1 COMMUNICATION TECHNIQUE	Page 9 / 11

- Citer les conditions d'enclenchement de ce contacteur en prenant comme exemple de rédaction, la condition concernant KA-UG.
- Contacts auxiliaires de KA-UG fermés (Relais de sécurité Arrêt d'Urgence alimenté)
 Contact du disjoncteur moteur OM-P1 fermé
- sonde P1 non enclenchée 11
- surcourse SCH-P1 non actionné | 11
- surcourse SCH-P2 non actionné
- C3.2 Identifier et inscrire dans les tableaux ci-dessous, le repère des appareils qui permettent d'avoir la montée du plateau 1 ou la descente du plateau 1 sachant que le contacteur de ligne **KM-P1** est alimenté.
 - Identifier pour chaque relais la sortie automate utilisée.

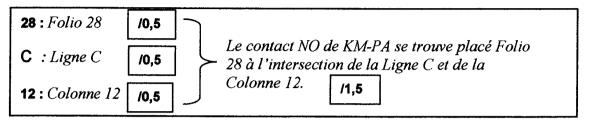

Montée du Plateau :		
Contacteur alimenté :	Relais auxiliaire utilisé:	Sortie automate utilisée :
MO-P1	KA-MP1 /1	00 /1

Descente du Plateau :		
Contacteur alimenté :	Relais auxiliaire utilisé:	Sortie automate utilisée :
DE-P]	KA-DP1 11	<i>O1</i>

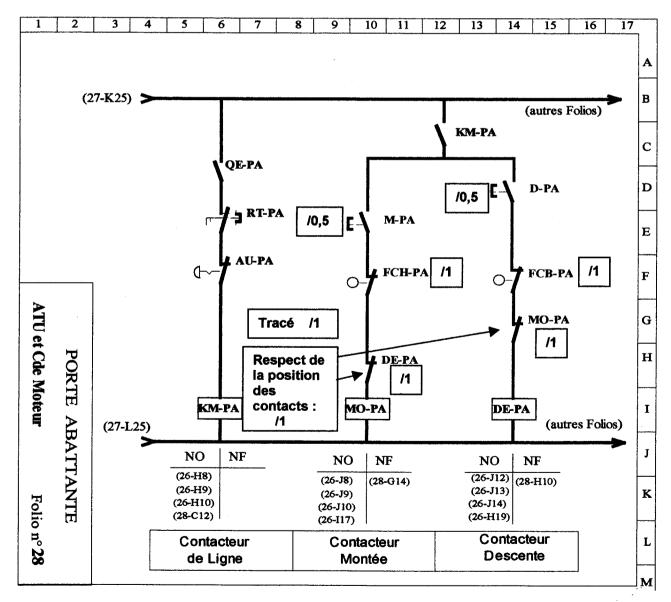
C3.3 – Traduire et compléter le grafcet du point de vue commande en tenant compte des choix technologiques retenus pour le matériel raccordé sur les entrées et sorties de l'automate à partir du grafcet fonctionnel du déplacement du plateau 1 proposé.

Grafcet fonctionnel

Grafcet partie commande à compléter



BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	Page 10 / 11


/8

C4 - Représentation fonctionnelle de la porte abattante :

- Représentation schématique de la porte abattante à l'aide des documents DT1, DT2 et DT11.
- C4 .1 Donner la signification de l'identification (28-C12) du contact NO du contacteur de ligne KM-PA noté sur le schéma proposé ci-dessous.

C4.2 – Terminer la représentation du schéma de commande de la porte abattante sachant que le fonctionnement est obtenu par un schéma de type « Montée / Descente » en marche impulsionnelle avec sécurité de fin de course (tenir compte des informations présentées sur le schéma et de la réponse à la question C4.1).

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	Page 11 / 11