CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGE et BAREME sur 20 points

A) Etude de la partie (ABCD) de la villa

1) Le triangle (ICB)

1.2)
$$CN = CB/2 = 10/2 = 5$$
 soit pour CN une longueur de 5 m.. (0,5 pt)

1.3) dans le triangle (ICN) rectangle en N, d'après le théorème de Pythagore :

$$IC^{2} = IN^{2} + CN$$

 $8^{2} = IN^{2} + 5^{2}$
 $IN^{2} = 39$
 $IN = \sqrt{39} = 6.24$ soit une hauteur de 6.24 m. (2 pts)

1.4)
$$S_1 = (CBxIN)/2 = (10x 6,24)/2 = 31,2$$

Le triangle ICB a une aire de 31,2 m² (1 pt)

2) Le trapèze isocèle (ABIJ)

2.1) BO =
$$(AB - IJ)/2 = (34,5 - 22)/2 = 6,25$$

Soit une distance BO de 6,25 m (1 pt)

2.2) dans le triangle (IBO) rectangle en O:

$$\tan B = IO / BO$$

$$\tan 38.7^{\circ} = IO / 6.25$$

$$6.25 \times \tan 38.7^{\circ} = IO$$

$$IO = 5 \quad \text{soit pour IO une mesure de 5 m.}$$

$$(2.5 \text{ pts})$$

2.3)
$$S_2 = IO \times (IJ + AB)/2 = 5 \times (22 + 34,5)/2 = 141,25$$

L'aire du trapèze est 141,25 m² (1 pt)

3) Les ouvertures

3.1)
$$S_3 = L \times 1 = 2,40 \times 14 = 33,6$$
. Une grande fenêtre a une aire de 33,6 m² (1 pt)
3.2) $S_4 = L \times 1 = 2,40 \times 4 = 9,60$ Une petite fenêtre a une aire de 9,60 m². (1 pt)

4)
$$S' = 2 \times S_1 + 2 \times S_2 - S_3 - 2 \times S_4$$

 $S' = 2 \times 31,2 + 2 \times 141,25 - 33,6 - 2 \times 9,60$
 $S' = 292,1$ soit une aire S'à couvrir de 292,1 m². (1 pt)

Examen: B. P.	Spécialité : COUVREUR		CORRIGE	Session: 2004
Épreuve : Mat	hématiques	Durée: 1 h	Coefficient: 1	Page: 1/2

B) Etude de la partie (EFGMH) de la villa

1)

1.1) dans le triangle (LPM), (TQ) // (PM). D'après le théorème de Thalès :

LM/LT = PM/QT

$$a / 3,12 = 5/2$$

 $a = 3,12 \times 2,5$
 $a = 7,8$ soit une arête de 7,8 m. (2 pts)

1.2)
$$S_5 = \pi Ra/2 = \pi \times 5 \times 7.8 / 2 = 61.26$$

soit une aire de 61.26 m². (1 pt)

1.3) S6 = L x 1 =
$$10 \times 50.8 = 508$$

Le rectangle EFGH a une aire de 508 m^2 (1 pt)

2)
$$S'' = S_5 + S_6 - 2 \times S_3 = 61,26 + 508 - 2 \times 33,6 = 502,06$$

Soit une aire S''de 502,06 m² (1 pt)

C)
$$S_t = S' + S'' = 292,1 + 502,06 = 794,16$$

Soit une aire totale S_t de 794,16 m² (1 pt)

D)

Examen: B. P.	Spécialité : COUVREUR		Session: 2004
Épreuve: Mathématique	S Durée	e: 1 h Coefficient:	1 Page : 2/2