Brevet professionnel

" Monteur en installations de génie climatique "

E4 - MATHÉMATIQUES - Unité 40

DUREE: 1 HEURE

COEFFICIENT: 1

Ce sujet est composé de 5 pages :

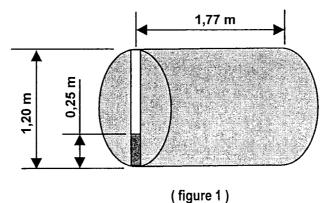
- → Les questions à traiter sont aux pages numérotées de 2/5 à 4/5
- → Une annexe à joindre à votre copie numérotée 5/5

Exercice 1: (4,5 points)

Voici l'extrait d'une facture annuelle de gaz (GDF) d'un particulier.

Gaz compteur N°156	Consommation		Prix du kWh	Montant H.T.	Montant T.V.A.	Total T.C.
	Exprimée en m³	Convertie en kWh	en euros	en euros	en euros	en euros
Abonnement :						
• 9,35 euros/mois du 01/01/03 au 30/06/03				56,10		
• 9,79 euros/mois du 01/07/03 au 31/12/03				58,74		
Consommation	1 461	16 349	0,0300	490,47		
TOTAL				605,31	102,45	707,76

ATTENTION : le tableau n'est pas à compléter.


- 1 Poser les deux opérations qui permettent de trouver les montants 58,74 et 490,47 indiqué sur cette facture.
- 2 L'abonnement au gaz a augmenté à partir du mois de juillet :
 - a) donner le montant (en euros) de cette hausse pour un mois.
 - **b**) exprimer, en pourcentage (**arrondie au dixième**) cette hausse, par rapport au prix en vigueur du 01/01/03 au 30/06/03.
- 3 La consommation est relevée en m³ mais facturée en kWh. Quelle est la quantité d'énergie fournie par un m³ de gaz (arrondie à 0,01) ?

Exercice 2:

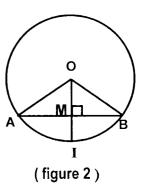
Première partie : (8,5 points)

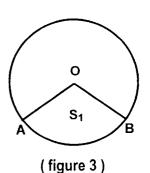
Une citerne fuel à la forme d'un cylindre horizontal de diamètre 1,20 m et de longueur 1,77 m. On désire calculer la quantité de fuel restante dans la citerne si la hauteur du liquide mesuré est de 0,25 m.

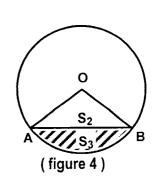
(N.B. : dans les figures qui suivent, les proportions ne sont pas respectées)

- 1 On représente par un cercle de centre O la coupe de la citerne (figure 2).
 - a Quelle est la nature du triangle (OAB) ? Justifier.
 - b Donner, en m, les mesures des longueurs OA, OI et OM.
 - c Dans le triangle OMB rectangle en M, calculer MB. (arrondir au millième).
 - **d** Sachant que MA = 0,487 m, calculer la mesure de l'angle \widehat{AOM} (arrondir à 0,1 degré).

- **b** Calculer **en m**² l'aire S₂ du triangle (OAB) (arrondir au dm²).
- c En déduire l'aire de S₃ (figure 4).
- d La longueur de cette citerne étant de 1,77m. Calculer, en litres, le volume de fuel restant.

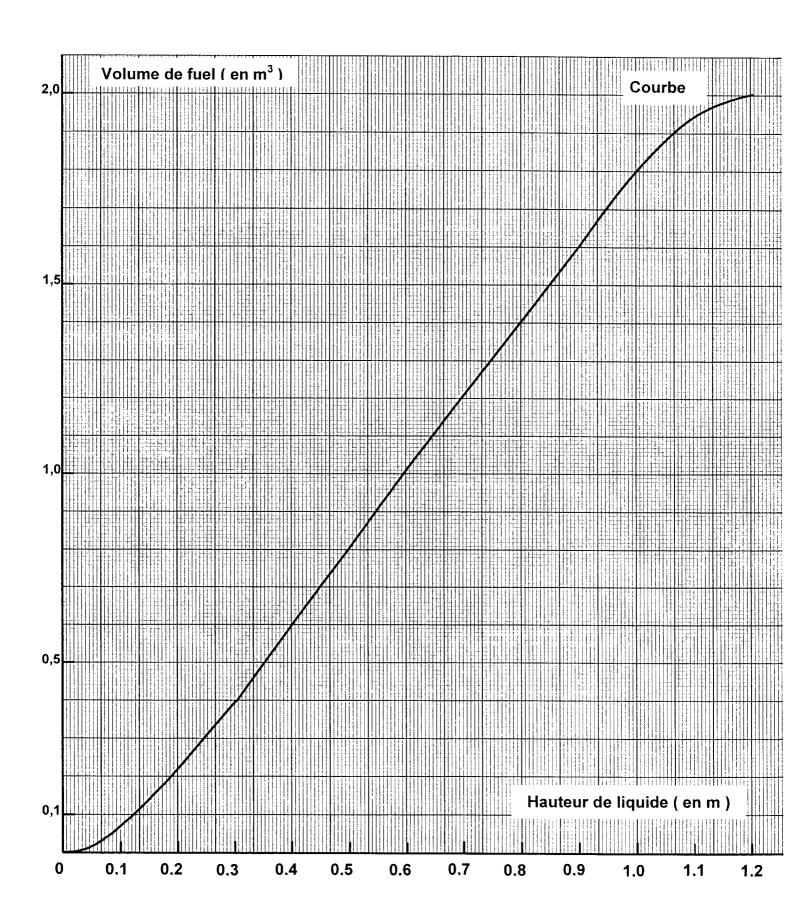

Rappel:


- pour un cylindre : $V = S \times h$ avec S aire du disque h hauteur
- aire d'un secteur d'angle α : $\mathcal{A} = \frac{\pi \times R^2 \times \alpha}{360^{\circ}}$


avec : R rayon du disque, α angle au centre.

- aire d'un triangle : $\mathcal{A} = \frac{\mathbf{b} \times \mathbf{h}}{2}$

avec : b base du triangle, h hauteur correspondante.



Deuxième partie : (7 points)

Dans le plan rapporté au repère orthogonal donné **en annexe**, on note \mathcal{C} la courbe représentant le volume de fuel dans la citerne en fonction de la hauteur de remplissage. La courbe \mathcal{C} est appelée "courbe de remplissage".

- 1 A l'aide de la représentation, (laisser apparents les traits de construction pour justifier les lectures sur le graphique); proposer:
 - **a** une valeur du volume V_1 (en m³) de fuel dans la citerne lorsque la hauteur de liquide est de $x_1 = 0,25$ m.
 - **b** une valeur de la hauteur x_2 (en m) du liquide lorsque le volume V_2 de fuel dans la citerne est de 1,05 m³.
 - c une valeur du volume de fuel total V_{total} de la cuve lorsqu'elle est pleine.
- **2** Le volume V de fuel est-il proportionnel à la hauteur x du liquide ? Justifier.
- 3 On considère la droite Δ d'équation : $y = \frac{5}{3}x$ sur l'intervalle [0; 1,2].
 - a Donner les coordonnées du point M d'abscisse 0 et du point N d'abscisse 1,2. (M et N sont des points de Δ), placer M et N dans le même repère de l'annexe.
 - **b** Tracer la droite Δ passant par **M** et **N**.
 - **c** Donner les coordonnées des points d'intersection de la droite Δ et de la courbe $\mathcal C$.
- **4** Si l'on considère la droite Δ , comme étant la courbe de remplissage de notre citerne.
 - **a** Déterminer l'ordonnée y_K du point K d'abscisse **0,95** appartenant à la droite Δ . Placer ce point dans le repère de l'annexe.
 - **b** Placer le point **J** d'abscisse **0,95** appartenant à la courbe \mathcal{C} dans le repère de l'annexe. Proposer une valeur pour son ordonnée y_J .
 - **c** Calculer la différence $y_J y_K$.
 - d Quelle signification peut-on donner à cette différence ?

ANNEXE à joindre à votre copie

