Toutes académies		Session 2005	
Sujet BACCALAURÉAT	PROFESSIONNEL PL	ASTURGIE -	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURC	CES	
Coefficient: 3	Durée: 4 heures	Feuillet:	1/23

DOSSIER RESSOURCES

SOMMAIRE

DOCUMENTS	N°
Présentation de l'entreprise	2
Présentation du produit	3
Dessin d'ensemble du produit	4
Dessin de définition du bouton poussoir	5
Gamme de contrôle du bouton poussoir	6
Dessin de définition : boîtier supérieur	7
Gamme de contrôle : boiter supérieur	8
Dessin de définition : boîtier inférieur	9
Gamme de contrôle : boîtier inférieur	10
Gamme de contrôle produit fini	11
Dessin housse de protection	12
Fiche matière PEhd Lacqtène	13
Fiche matière: A B S Cycolac	14
Fiche matière: POM Hostaform généralités	15
P O M Hostaform caractéristiques	16
Caractéristiques des presses	17
Plateaux machine	18
Fiche technique anneau de centrage	19
Fiche technique: limites de tolérances ISO	20
Fiche technique buse injection	21
Dessin du moule boîtier inférieur	22 - 23

Toutes académies	Ses	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		05,00121
Coefficient: 3	Durée : 4 heures	Feuillet:	2/23

PRÉSENTATION DE L'ENTREPRISE

Une société est spécialisée dans l'équipement automobile, elle fabrique et assemble des éléments assurant une fonction précise.

Exemple:

système intérieur:

planches de bord - sièges

ceintures sécurité - airbag

système bloc avant : pare choc - faces avant ventilation

Effectif: 1500 personnes

MODULE SÉCURITÉ: ceintures avant – arrière airbag

Moyens de production

Presses à injecter: 300 à 2000 KN horizontales et verticales

Lignes de montage : soudage par ultra son - miroir - haute fréquence

Horaires de travail

Équipes en 2 x 7 heures

semaines: 2 x 35 heures

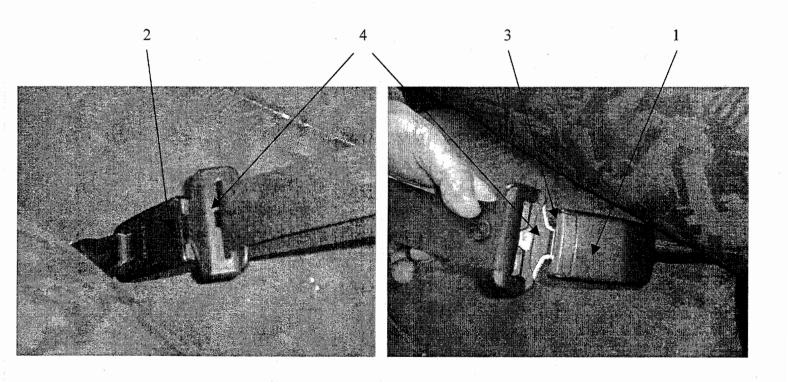
Horaires:

matin

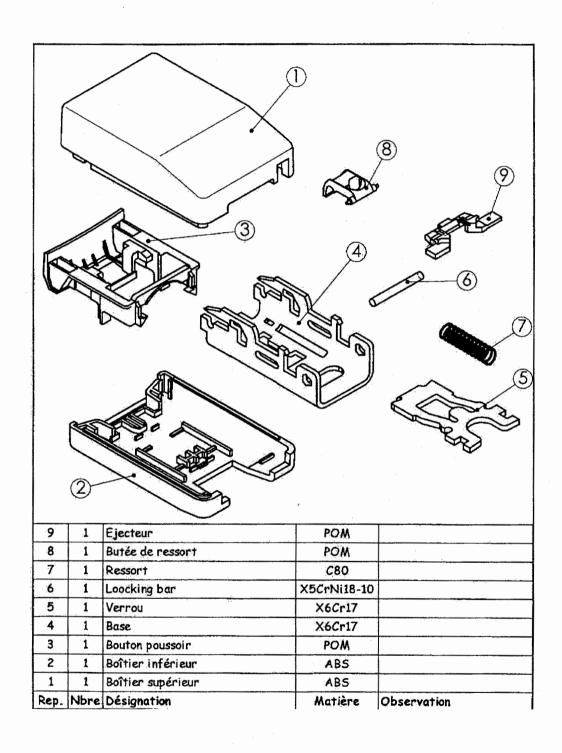
6h - 13h

Après midi

13h - 20h

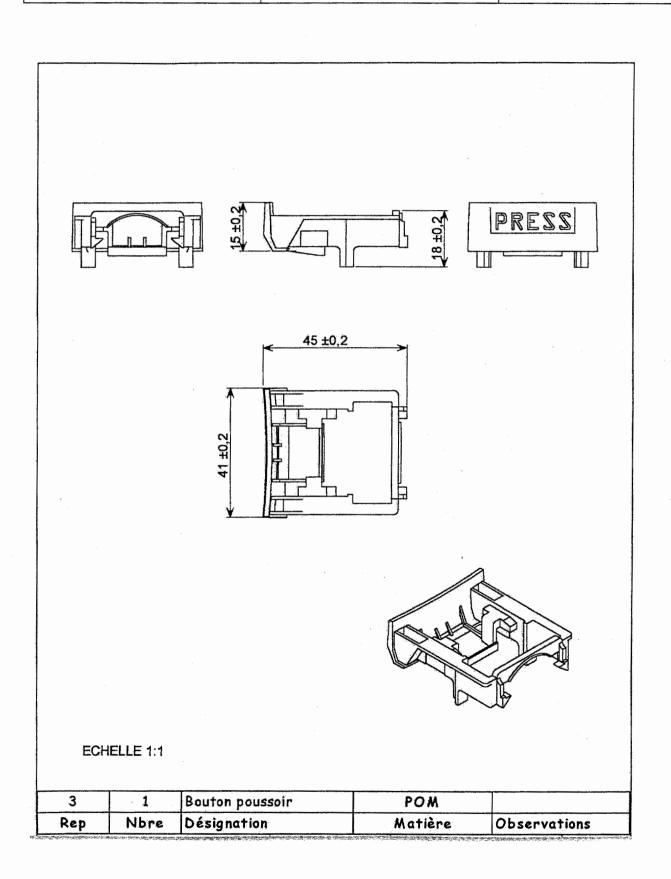

Toutes académies	S	ession 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAS	STURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	3/23

PRÉSENTATION DU PRODUIT


Le produit est une boucle de ceinture de sécurité attenante au siège arrière d'une automobile. Il se compose de :

1 BOÎTIER SUPÉRIEUR: rep 1
 1 BOÎTIER INFÉRIEUR: rep 2
 1 BOUTON POUSSOIR: rep 3
 1 BOUCLE D'ACCROCHAGE: rep 4

et de différentes pièces entrant dans la fonction globale de la boucle.

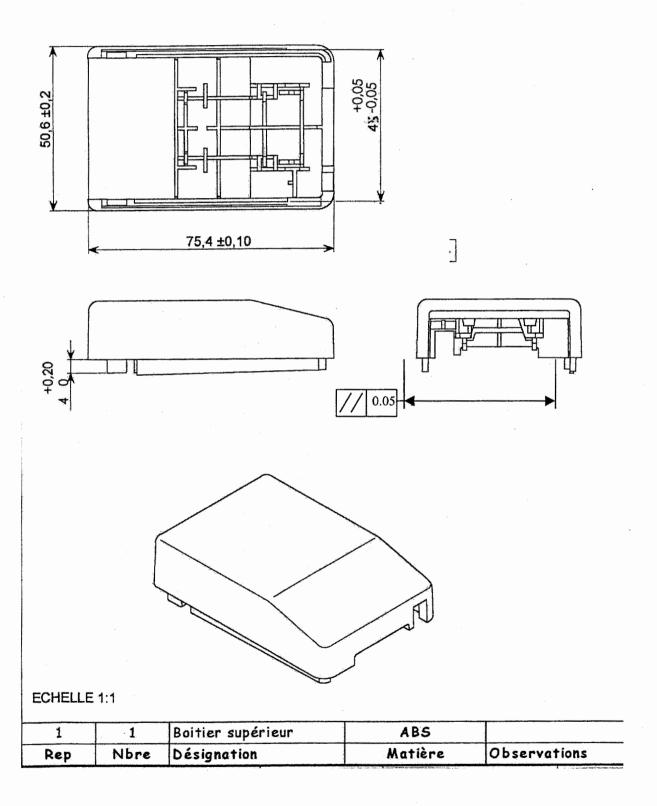


Toutes académies	Sessi	on 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLASTU	JRGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée : 4 heures	Feuillet:	4/23

BOUCLE ARRIÈRE DE CEINTURE

Toutes académies	Sess	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée : 4 heures	Feuillet:	5/23

Toutes académies	Ses	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	6/23


GAMME DE CONTRÔLE

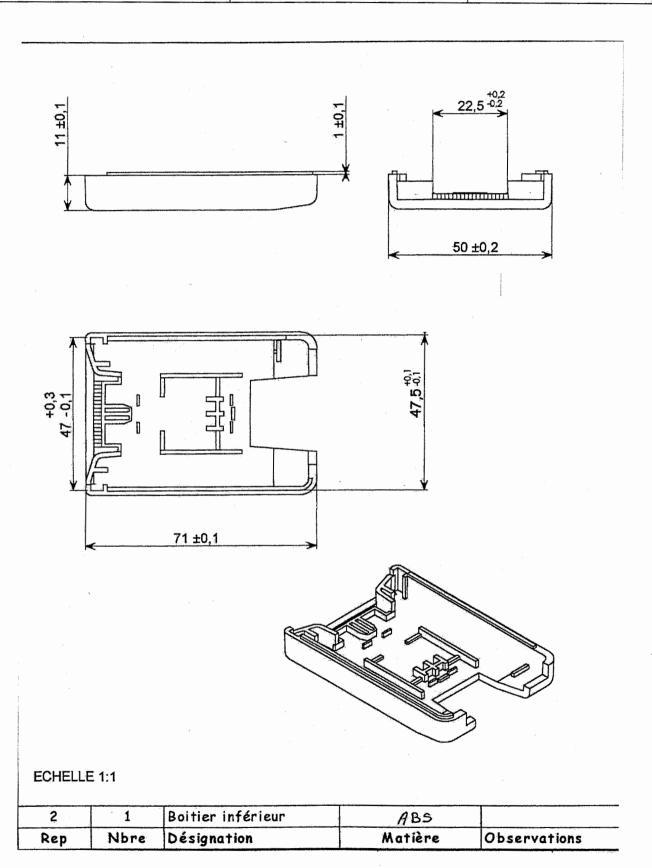
Bouton poussoir Matière: POM

Couleur: rouge

Caractéristiques	valeurs	Niveaux			Moyens
à contrôler		opérateur	régleur	Technicien qualité	
MATIÈRE	POM		X	X	Visuel / ref MFI
TEINTE	Rouge uniforme	Х	X		Visuel
ASPECT	Pièce propre sans bavures	X	х		Visuel
MASSE	Maxi 6,1g Mini 5,9g	X	X		Balance 1/100g
DIMENSIONS	15 ± 0.2 18 ± 0.2		X	X	Pied à coulisse
GÉOMÉTRIE					

Toutes académies	Ses	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	TURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	7/23

Toutes académies	Ses	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	CURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	8/23


GAMME DE CONTRÔLE

Boîtier supérieur

Matière : A B S couleur : noir

		Niveaux			
Caractéristiques à contrôler	Valeur	opérateur	régleur	Technicien qualité	Moyens
MATIÈRE	ABS		X ,	x	Visuel / réf MFI
TEINTE	noir	х	X		Visuel
ASPECT	pièce propre et sans bavures	х			Visuel
MASSE	17 ^{±0.2} g		X		Balance 1/100 g
DIMENSIONS	47 ^{± 0,1} +0,2		X	x	Micromètre
	4 0		Х	X	Montage plus comparateur
GÉOMÉTRIE //	0,05			X	montage plus Comparateur

Toutes académies	Se	ession 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAS	TURGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée : 4 heures	Feuillet:	9/23

Toutes académies	Sess	ion 2005	Code(s) examen(s)	
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T	
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES			
Coefficient: 3	Durée: 4 heures	Feuillet:	10/23	1

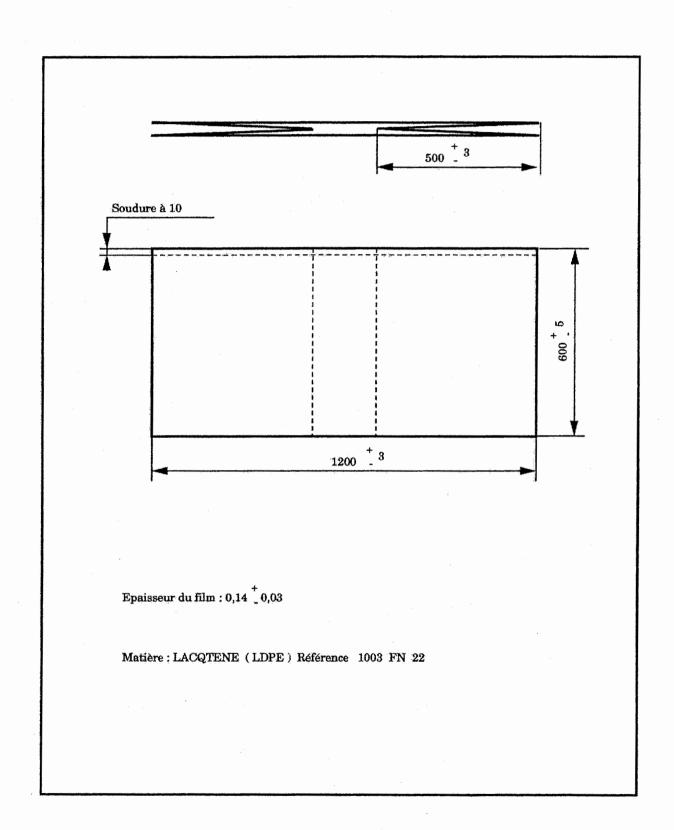
GAMME DE CONTRÔLE

Boîtier inférieur

Matière : A B S couleur : noir

Caractéristiques	Valeurs		Niveaux		Moyens
à contrôler	Varcurs	opérateur	régleur	Technicien qualité	TVIOY CITS
MATIÈRE	ABS		X	X	Visuel / réf MFI
TEINTE	-	X	Х		Visuel
ASPECT	Pièce propre Sans bavures	X	х		Visuel
MASSE	Maxi :10,60g mini : 10,20g	X	x		Balance 1/100g
DIMENSIONS	+0,3 47 -0,1		X	x	
GÉOMÉTRIE //	0,05		-	X	Montage + comparateur

Toutes académies	Sess	sion 2005	Code(s) examen(s)	
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T	
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES			
Coefficient: 3	Durée: 4 heures	Feuillet:	11/23]


GAMME DE CONTRÔLE

PRODUIT FINI

BOUCLE D'ACCROCHAGE ARRIÈRE

Caractéristiques à contrôler	Valeurs	Moyens de contrôle	Fréquence
ASPECT	Ni rayures ni bavures Surface grainée propre	Visuel : pièce témoin	5/h
SOUDAGE			
Assemblage	Alignement 0,15	Manuel	5/h
Tenue du soudage	Arrachement	Test :300 daN	5/lot
VERROUILLAGE DÉVERROUILLAGE	Résistance Éjection	Test: 1000 daN Test: 5 pièces / h Test: 1000 cycles	
CONDITIONNEMENT	Positionnement sur plateau	Étiquette code barre	

Toutes académies	Se	ssion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAS	TURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		,
Coefficient: 3	Durée: 4 heures	Feuillet:	12/23

e : E1.A	1 - U	.2	Τe	ech	mo	logie	DOS	SSIEI	R RF			ES	Coef	: 3	Dur	ée : 4	1 h	Fen	ille
Abbi ICATION EXAMBI ES	<u>.</u>		ANWENDUNGSBEISPIELE			Palies abrink wrepping and vidusirial flins Refeacible gaigle e-linis industries Schrumpfhauben und industrietolien	Palierstrinik wrapping; heseyy duty sacks and industrial films Retractable palesto, satos grande čontencince et linns industriels Schrumpfhauben, Schwersäcke und Industrialollen	oaxirusiori	Rigid baga; automatic patchaging, ahrink ilim Sachere ingide, emballage automatique, reknotable Stelle Besjes, Follen IV: Vetpackungsmachtlinen, Schrumpfollen	schlerföllen		Thin strink litin, rigid laminating litin, coextrusion Reitaciable mince, litin rigide, pour complexage, coextrusion Feinschrumpflolien, stelle, Kaachierfollen, Coextrusion	Rigid bags. Spothere rigide. Shelfe Beutol	Nodicin transparency films, thin strink film Film moyenne transparence, rétractable mince Wilfellfeitsparente Verpackungen, Feinschrumpflollen	Medium (ransparancy bags Sächene moyenne transparence Mittelitansparente Verpackungen	High transparencky bods Sachere, haute transparenck Hochtransparente Verpackungen	Rigið high transpörbney litn, áutómalte packaging Film ugde hauté transparence, emballógé áutómáltétie Hochttansparente Folien, Folien fur Verpnekurgsmaschlunen	High transparency thur bags Sachove tran haufe transparence Hochtransparente fein Verpackungen	rucamide (AB); Antiblockmittel - (G) Glettmittel - (O); Oteamld (+); 500 ppm - (++); 750 ppm - (+++); 1000 ppm
	- 31 -		CONTRASTE		Afochem	8	45	Q.	122	69	55	Ą	7.5	0,4	8	158	*8	80	te - (Er): E
in the series of	FILM PHOPERTIES (50 µm) PROPRIE ES SUR FILM (50 µm)	05 N			4STM D 1003	18	14	01	6	6	10	7	7	2	89	50.	. 10	r.	• (O): Oléamic
HOPERTIES PLICATIVES IENSCHAFTEN	HICM PING PROPRIE	FOLIENEIGE	DANT TEST 9		ASTM D 1709 4	250	300	250	160	220	220	961	190	170	180	1.40	120	120	(G): Additt glissant - (O): Oleamide - (Er): Erucamide
	VICAT TEMPERATURE	VICAT PUNKT	Ų	ISO R 308	22	100	86	86	107	995	95	100	100	¥ 46	¥6;	97	105	63	(AB): Additi antiblock - (G): Additif glissant - (C
APPLICATIVE PI PROPRIETES AP ANWENDUNGSEIG	HEAK A LA	RUPTURE	BHUCHLEHNUNG	ISO R 527	æ	009	650	200	009	590	059	850	920	550	550	900	9005	500	(AB): Addille
	Z#	A LA RUPTURE	MPa	ISO R 527	ASTM D 638	20	17,8	17,6	15.2	14.7	14.7	-	1.7	10	10	10,3	12,7	t0	amide
	SPECIAL ADDITIVE	ADDITIVE			8						‡			, in	‡			1	- (Er): Eruc
STICS	SPECIAL	SPEZIALE	-	-	to l						b ≠		0‡		0‡	o‡	o‡	<u>т</u> ‡	feamide
CHARACTERISTICS CARACTERISTIQUES EIGENSCHAFTEN	DENSITY	DICHTE		180 1183	ASTM D 1505	0,925	0,922	0,923	0,928	626'Q	D,922	0,924	0,924	0,922	0,922	0,925	0,928	0,922	0 (0) - Britis
CHA	MELT INDEX	SCHMELZINDEX	(190°C-2,18 kg)	150 1133	8	0,25	0,25	6,0	6,0	7,0	7'0	970	9'0	2,4	:2:4	2	2,5	6	- (G); Slip add
	ТУРЕ	REFERENCE	į	<u>.</u>		FE 2520	1003 FN 22	1003 FE 23	1004 FE 30	1007 FN 23	1007 FG 23	1008 FE 24	1008 FH 24	1020 FN 24	1020 FG 24	1020 FH 25	1020 FH 28	1030 FX 22	(AB); Antiblock additive - (G); Slip additive - (O); Oleamide - (Er); Erucamide

Toutes académies	Se	ssion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAS	TURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée : 4 heures	Feuillet:	14/23

Fiche matière:

ABS

CYCOLAC (G100) GE PLASTIC

Généralités:

Cette matière d'usage général, antistatique donne un équilibre de caractéristiques techniques. Son utilisation est conseillée pour des applications dans le domaine des télécommunications, électroménager, automobile ; une formulation spécial e est faite pour conserver une exceptionnelle stabilité aux U-V intérieurs.

Transformation

Moulage par injection:

La vis: standard

Paramètres d'injection

Étuvage: 2h à 80 ° C T° matière: 220° à 270° C

- pression d'injection en bout de vis (P.I): 800 à 1400 bars
- pression de maintien : 50 à 70 % de P.I
- contre pression : 2 à 10 bars
- T° moule: 60° C mini
- Retrait: 0.7%

Caractéristiques: normes I S O

Thermiques

Point de ramollissement Vicat: 95°C Indice de fluidité: 20g / 10 min

Physiques

Masse volumique: 1,05g/cm3

Toutes académies		Session 2005	Code(s) examen(s)
Sujet BACCALAURÉA	T PROFESSIONNEL	PLASTURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologi	e DOSSIER RESSO	URCES	
Coefficient: 3	Durée : 4 heures	Feuillet:	15/23

Fiche matière: POLYOXYMETHYLENE (POM) copolymère

HOSTAFORM (source HOECHST)

2- Moulage par injection

2.1 La vis

Une vis standard convient très bien pour la transformation de l'hostaform

2.2 Les paramètres d'injection

Température matière : 190° à 210° C maxi

Pression d'injection en bout de vis : 600 à 2000 bars

Vitesse d'injection:

Pression de maintien : 60 à 80% de la pression de maintien

Contre pression : 0 à 20 bars T° moule du moule : 60 à 80° C

Caractéristiques physiques : normes iso

Propriétés	unité	Qualités				
1 Topricies	diffic	C9021K	C2521	T1020		
Masse volumique	g/cm3	1,41	1,41	1,41		
Indice de fluidité M F I 190/2,16	g /10 min	9	2,5	1		
Absorption d'eau après 24h D'immersion à 23° C	mg	15	15	15		

Caractéristiques mécaniques : normes iso

Propriétés	unité		Qualités	
rioprietes	unite	C9021K	C2521	Г1020
Limite élastique (traction)	MPa	64	62	64
Module d'élasticité	MPa	2900	2700	2650
Dureté à la bille 30s	MPa	144	144	150
Choc Charpy sur barreau lisse	K j /m²	Pas de rupt	Pas de rupt	Pas de rupt

Caractéristiques thermiques : normes iso

Propriétés	unité	Qualités				
Tropriotes	diffice .	C9021K	C2521	T1020		
Stabilité dimensionnelle à chaud	C°	104	101	97		
Point de ramollissement Vicat	C°	150	151	151		

Toutes académies		Session 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL	PLASTURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSO	URCES	
Coefficient: 3	Durée: 4 heures	Feuillet:	16/23

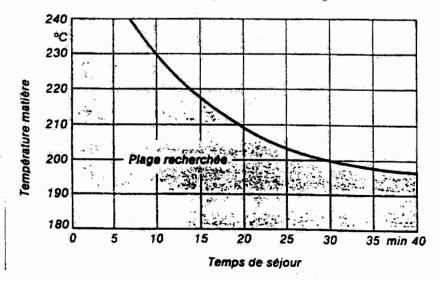
Fiche matière: POLYOXYMETHYLENE (POM) copolymère

HOSTAFORM (source HOECHST)

1- Transformation:

1.1 Prescription de sécurité

Pendant la transformation de l'hostaform, la température de masse ne doit pas dépasser 230 à 240 °C, compte tenu des durées de séjour admissibles dans le cylindre. Une élévation de température excessive dégrade l'hostaform et libère du formaldéhyde gazeux. Des hottes d'aspirations doivent être installées juste au dessus des machines.


Une sollicitation thermique excessive peut faire monter la pression des produits de décomposition gazeux dans le cylindre fermé ou obturé par un bouchon de matière froide ; il faut que la pression puisse s'équilibrer au niveau de l'orifice d'alimentation, sinon la pression croissante des gaz pourrait provoquer des dégâts matériels et corporels. Il est donc important de veiller à ce que la buse d'injection ne soit pas obstruée par des bouchons de matière froide.

Si l'on constate une dégradation thermique de la matière dans le cylindre, et même en cas de doute, il faut arrêter le chauffage et purger la machine. Plonger la matière dégradée dans l'eau afin d'éviter les odeurs désagréables.

1.2 Plage de transformation

La T° matière peut être comprise entre 180 et 230 °C mais elle doit se situer de préférence entre 190 et 210°C. Cette T° est atteinte, d'une part par le chauffage du cylindre et d'autre part par la friction (auto-échauffement). La quantité de chaleur produite par cisaillement et auto-échauffement doit être la plus faible possible. Il faut donc **contrôler la vitesse de rotation de la vis.** On donne la vitesse périphérique de la vis en fonction de sa vitesse de rotation, pour différents diamètres. La vitesse périphérique de la vis standard ne doit pas dépasser 0,1 à 0,3 m/s.

Figure 4: Temps de séjour maximal admissible dans l'unité d'injection d'une presse

Toutes académies

Session 2005

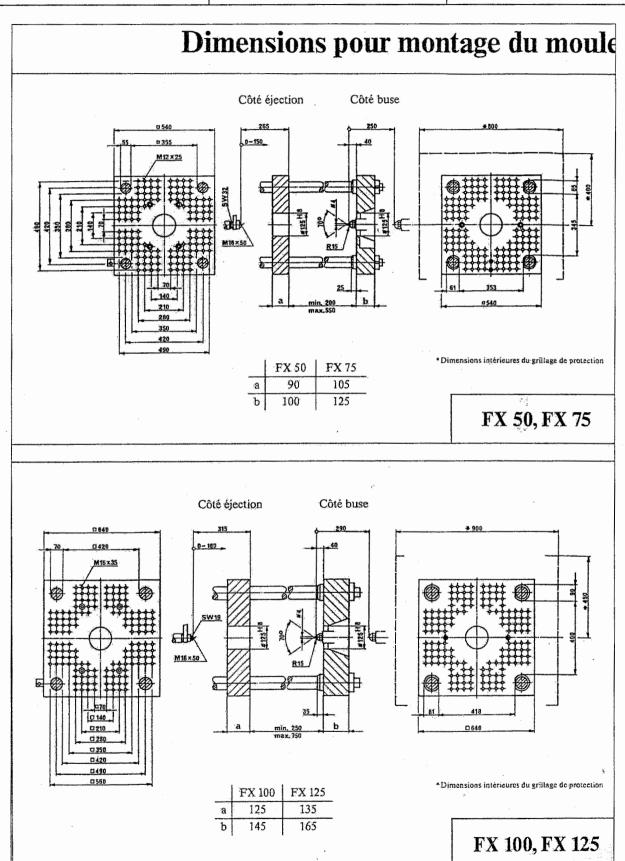
Code(s) examen(s)

Sujet BACCALAURÉAT PROFESSIONNEL PLASTURGIE

Épreuve: E1.A1 – U.2 Technologie

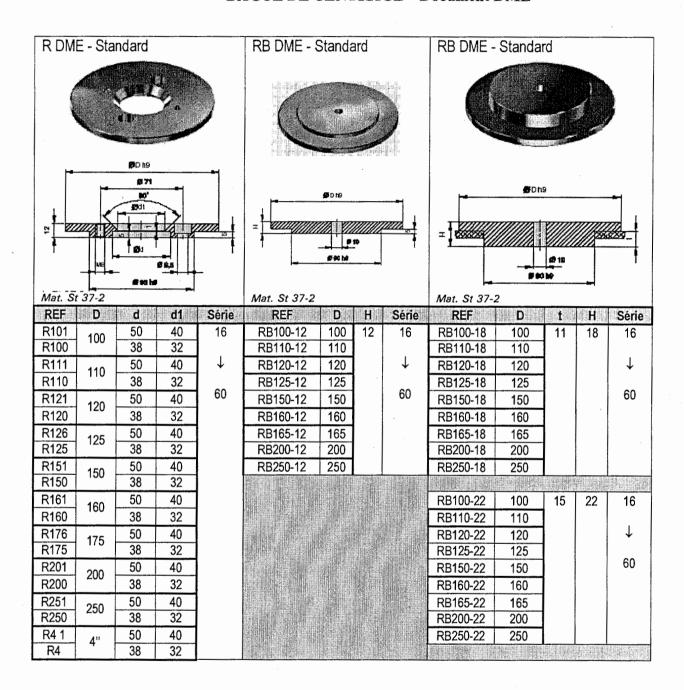
DOSSIER RESSOURCES

Coefficient: 3


Durée: 4 heures

Feuillet: 17/23

PRESSES ATELIER CEINTURES


	Id	PZ	P3	P4	PS
	BOY 30M 365-105	KLOCKNER FX 50 - 200	KLOCKNER FX 75 - 200	DK NGH 110 - 400	DK NGH 175 - 600
Force de verrouillage	365 KN	500 KN	750 KN	1100 KN	1750 KN
Course d'ouverture	300 mm	350 mm	350 mm	415 mm	475 mm
Passage entre colonnes	255 x 255	355 x 350	355 x 350	500 x 500	500 x 500
Volume injectable	58 cm ³	85 cm ³	151 cm ³	$256 \mathrm{cm}^3$	416 cm ³
Pression matière en bout de vis	1820 bar	2350 bar	1325 bar	1600 bar	1530 bar
Ø de vis	28 mm	30 mm	40 mm	42 mm	48 mm

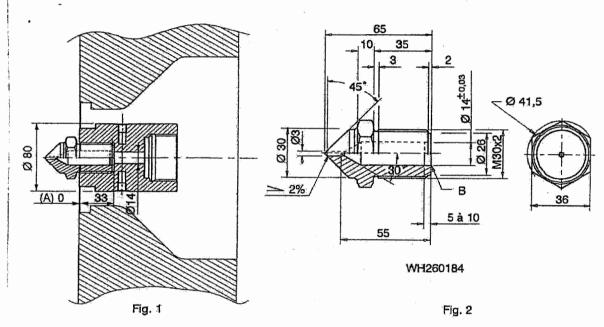
Toutes académies	1	Session 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLA	STURGIE	0506 PL T
Épreuve: E1.A1 – U.2 Technologie	DOSSIER RESSOURCE	S	
Coefficient: 3	Durée: 4 heures	Feuillet:	18/23

Toutes académies		Session 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PI	LASTURGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOUR	CES	
Coefficient: 3	Durée: 4 heures	Feuillet:	19/23

BAGUE DE CENTRAGE – Document DME

Toutes académies	Sess	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	URGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	20/23

ARBRES	Jusqu'à 3 inclus	3 à 6 Inclus	6 à 10	10 à 18	18 à 30	30 à 50	50 à 80	80 à 120	120 à 180	180 à 250	250 à 315	315 à 400	400 à 50
a 11 15	- 270 - 330	- 270 - 345	- 280 - 370	- 290 - 400	- 300 - 430	- 320 - 470	- 360 - 530	- 410 - 600	- 580 - 710	- 820 - 950	- 1050 - 1240	- 1350 - 1560	- 1650 - 1900
c 11	- 60 - 120	- 70 - 145	- 80 - 170	- 95 - 205	- 110 - 240	- 130 - 280	- 150 - 330	- 180 - 390	- 230 - 450	- 280 - 530	- 330 - 620	- 400 - 720	- 480 - 840
d 9	- 20 - 45	- 30 - 60	- 40 - 75	- 50 - 93	- 65 - 117	- 80 -142	- 100 - 174	- 120 - 207	- 145 - 245	- 170 - 285	- 190	- 210	- 230
d 10	- 20 - 60	- 30 - 78	- 40 - 98	- 50 - 120	- 65 - 149	- 80 - 180	- 100 220	- 120 - 250	- 145	-170	- 190	- 210	- 385 - 230
a 11	- 20 - 80	- 30 - 105	- 40 - 130	- 50 - 160	- 65 - 195	- 80 - 240	- 100 - 290	- 120	- 305 - 145	- 355 - 170	- 400	- 440 - 210	- 480 - 230
e 7	- 14 - 24	- 20 - 32	- 25 - 40	- 32 - 50	- 40 - 61	- 50 - 75	- 60 - 90	- 340 - 72	- 395 - 85	- 460 - 100	- 510 - 110	- 570 - 125	- 630 - 135
e 8	- 14 - 28	- 20 - 38	- 25 - 47	- 32 - 59	40	- 50	- 60	- 107 - 72	- 125 - 85	- 146 - 100	- 162 - 110	- 182 - 125	- 198 - 135
e 9	- 14	- 20	- 25	- 32	- 73 - 40	89 - 50	- 106 - 60	- 126 - 72	- 148 - 85	- 172 - 100	- 191 - 110	- 214 - 125	- 232 - 135
16	- 39 - 6	- 50 - 10	- 61 - 13	- 75 - 16	- 92 - 20	- 112 - 25	- 134 - 30	- 159 - 36	- 185 - 43	- 215 - 50	- 240 - 56	- 265 - 62	- 290 - 68
17	- 12 - 6	- 18 - 10	- 22 - 13	- 27 - 16	- 33 - 20	- 41 - 25	- 4 9 - 3 0	- 58 - 36	- 68 - 43	- 79 - 50	- 88 - 56	- 98 - 62	- 108 - 68
18	- 16 - 6	- 22 - 10	- 28 - 13	- 34 - 16	- 41 - 20	- 50 - 25	- 60 - 30	- 71 - 36	- 83 - 43	- 96 - 50	- 106 - 56	- 119 - 62	- 131 - 68
PARTY AND	- 20 - 2	- 28 - 4	- 35 - 5	- 43 - 6	- 53 - 7	- 64 - 9	- 76 - 10	- 90 - 12	- 106 - 14	- 122 15	- 137 - 17	- 151 - 18	- 165 - 20
g5	- 6 - 2	- 9	- 11 - 5	- 14 - 6	- 16 - 7	- 20 - 9	- 23 - 10	- 27 - 12	- 32 - 14	- 35 - 15	- 40	- 43	- 47
g 6	- 8 0	- 12 0	- 14 0	- 17 0	- 20	- 25	- 29	- 34	- 39	- 44	- 49	- 18 - 54	- 20 - 60
h 5	- 4	- 5	- 6	- 8	- 9	- 11	- 13	- 15	- 18	- 20	- 23	- 25	- 27
b 6	- 6	- 8	- 9	- 11	- 13	- 16	- 19;	- 22	- 25	- 29	- 32	- 36	- 40
1.7°	- 10	- 12	15	- 18	- 21	- 25	- 30	- 35	- 40	- 46	0 - 52	0 - 57	0 - 63
h8	- 14	- 18	- 22	- 27	- 33	- 39	- 46	0 - 54	- 63	.0 - 72	- 81	- 89	97
h 9	- 25	- 30	- 36	- 43	- 52	- 62	0 - 74	0 - 87	- 100	0 115	0 - 130	- 140	- 155
h 10	- 40	- 48	- 58	0 ~ 70	0 - 84	- 100	0 120	- 140	- 160	0 185	0 210	- 230	- 250
h 11	- 60	0 - 75	- 90 - 90	- 110	0 130	- 160	0 - 190	0 - 220	0 - 250	0 290	0 - 320	- 360	:0 400
h 13	0 140	0 - 180	0 - 22 0	- 270	0 - 330	- 390	0 - 460	- 540	0: - 630	0 720	- 810	9 - 890	0 - 970
16	+ 4 - 2	+ 6	+ 7	+ 8	+ 9	- 11 - 5	+ 12 - 7	+ 13 - 9	+ 14 - 11	+ 15 - 13	+ 16 - 16	+ 18 - 18	+ 20
js5	± 2	± 2,5	± 3	± .4	± 4,5	± 5,5	± 6,5	± 7,5	± 9	± 10	± 11,5	± 12,5	± 13,5
js 6	± 3	± 4	± 4,5	= 5,5	± 6,5	±. 8	± 9,5	± 11	±12,5	±14,5	± 16	± 18	± 20
js9 js11	± 12 ± 30	± 15 ± 37	± 18	± 21 ± 55	± 26	± 31 ± 80	± 37 ± 95	± 43 ±110	± 50 ± 125	± 57 ±145	± 65 ± 160	± 70	± 77
k 5	+ 4	+ 6	+ 7	÷ 9	+ 11	÷ 13	+ 15	+ 18	+ 21	+ 24	+ 27	± 180 + 29	± 200 ÷ 32
k 6	÷ 6	+ 1	+ 1 + 10	+ 12	÷ 2	+ 2 + 18	+ 2	+ 3 + 25	+ 3 + 28	+ 4	+ 4 + 36	÷ 4 + 40	+ 5 + 45
m 5	+ 6	÷ 1 + 9	+ 1	+ 1 + 15	+ 2 + 17	+ 2	+ 2	+ 3 + 28	+ 3 + 33	+ 4 + 37	+ 4 + 43	+ 4 + 46	+ 5
m 6	+ 2	÷ 4 ÷ 12	+ 15.	+ 7 + 18	+ 8	+ 9 + 25	+ .11 . + 30	+ 13 + 35	+ 15 + 40	+ 17 + 46	+ 20 + 52	+ 21 + 57	+ 23
	÷ 2 + 10	÷ 4 + 15	+ 6	+ 7	+ 8 + 28	+ 9 + 33	÷ 11 + 39	+ 13 + 45	+ 15 + 52	÷ 17	+ 20 + 66	+ 21	+ 23
n 6	+ 4	+ 8 + 20	+ 10	+ 12	+ 15	+ 17	+ 20	+ 23	+ 27	+ 31 + 79	+ 34	+ 37	÷ 40
p 6	+ 6	+ 12	+ 15	+ 18	+ 22	÷ 26	+ 32	+ 37	+ 43	+ 79 + 50	+ 88 + 56	+ 98 + 62	+ 108 + 68


Toutes académies		Session 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLA	STURGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOURCE	ES	
Coefficient: 3	Durée: 4 heures	Feuillet:	21/23

0.2.5. Position embout de fourreau et dimensions des buses

0.2.6. Barrel nozzle position and nozzle tip dimensions

Embout de fourreau à passage direct Ø 22 - 25 - 28

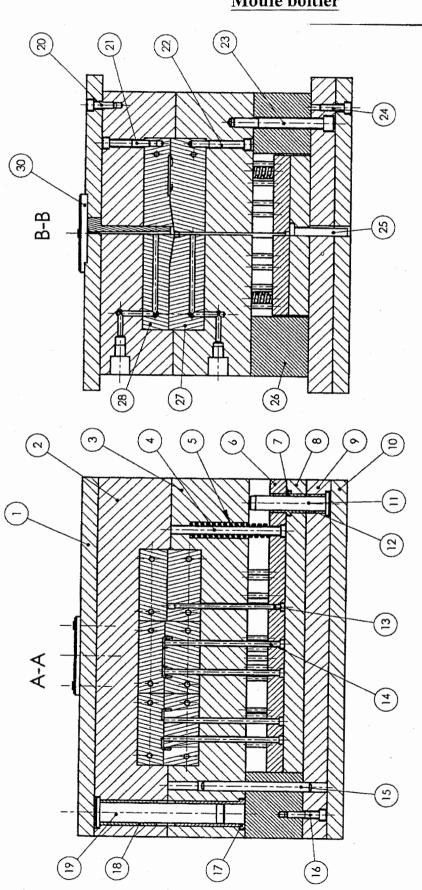
Open barrel nozzle

(A): avance maximum du groupe injecteur, en pratique augmenter de 5 mm.

(B): angle vif (C): suivant longueur buse

(D): suivant moule

(A): maximum forward position of injection unit, in practice increase by 5mm.


(B): sharp edge

(C): according nozzle tip length

(D): according mould

Toutes académies		Session 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLA	STURGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOURCE	S	
Coefficient: 3	Durée : 4 heures	Feuillet:	22/23

Moule boîtier

Toutes académies	. Ses	sion 2005	Code(s) examen(s)
Sujet BACCALAURÉAT	PROFESSIONNEL PLAST	TURGIE	0506 PL T
Épreuve: E1.A1 - U.2 Technologie	DOSSIER RESSOURCES		
Coefficient: 3	Durée: 4 heures	Feuillet:	23/23

Dimensions de l'outillage (h x 1 x e) : 330 x 250 x 250

