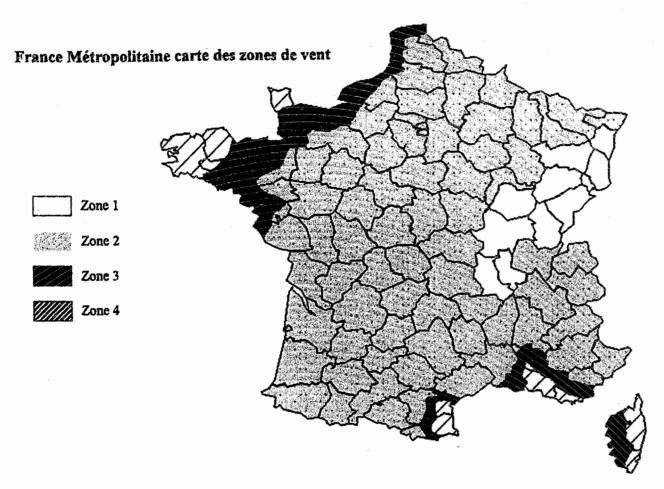
SESSION: 2005

DUREE: 4 heures

COEFFICIENT: 2

E1 - EPREUVE SCIENTIFIQUE ET TECHNIQUE

A1 - Etude scientifique et technologique d'un ouvrage (U 11)


CE DOSSIER COMPREND:

1 - DOCUMENTS TECHNIQUES COMPLEMENTAIRES

2 - DOSSIER SUJET - REPONSES

Seules les pages du dossier sujet – réponses (blanches) DR 01/07 à DR 07/07 sont à rendre avec la copie

AUCUN DOCUMENT N'EST AUTORISE L'USAGE DE LA CALCULATRICE EST AUTORISE

La situation d'environnement de la construction

De ce point de vue, on distingue quatre situations d'environnement de la construction :

- a à l'intérieur des grands centres urbains (zone urbaine où les bâtiments occupent au moins 15% de la surface et ont une hauteur moyenne supérieure à 15 m)
- b dans les villes petites et moyennes ou à la périphérie des grands centres urbains, dans les zones industrielles, dans les zones forestières
- c en rase campagne
- d en bord de lacs ou plans d'eau pouvant être parcourus par le vent sur une distance d'au moins 5 Km ou en bord de mer, lorsque la construction étudiée est à une distance du rivage inférieure à 20 fois la hauteur de cette construction

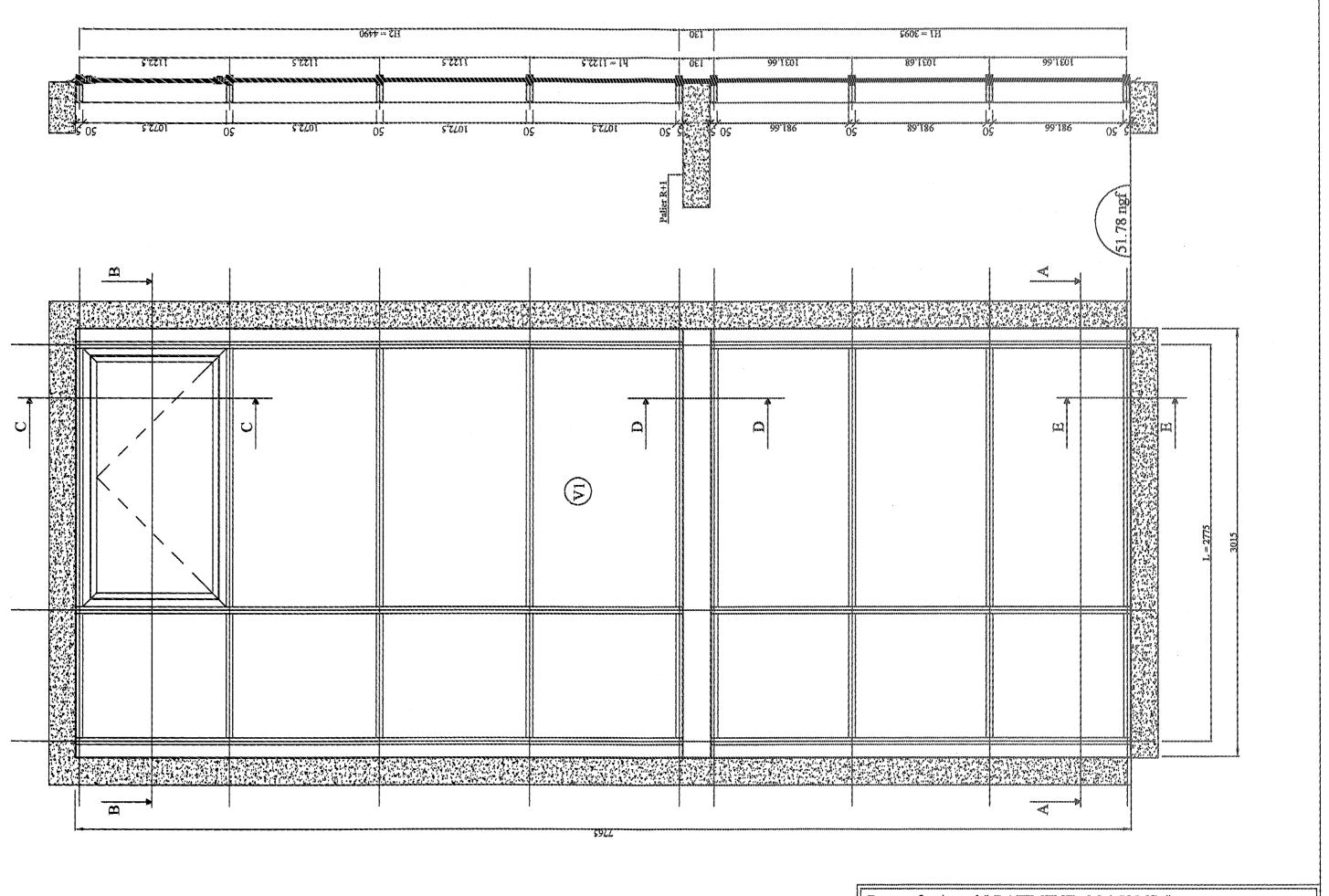
Dans certain cas, en bord de mer, les vents forts viennent de l'intérieur des terres ; c'est par exemple le cas général du littoral méditerranéen situé en zone 3 et 4 (hors Corse), dans ce cas les fenêtres dont la situation correspond à la situation précédente sont considérées comme en situation c : vis à vis des effets du vent.

La hauteur de la fenêtre au dessus du sol

On distingue de ce point de vue les fenêtres dont la partie haute est située à une hauteur H au-dessus du sol telle que :

- $H \le 6 \text{ m}$
- $6 \text{ m} < \text{H} \le 18 \text{m}$
- $18 \text{ m} < \text{H} \le 28 \text{m}$
- $28 \text{ m} < \text{H} \le 50 \text{ m}$
- $50 \text{ m} < \text{H} \le 100 \text{ m}$.

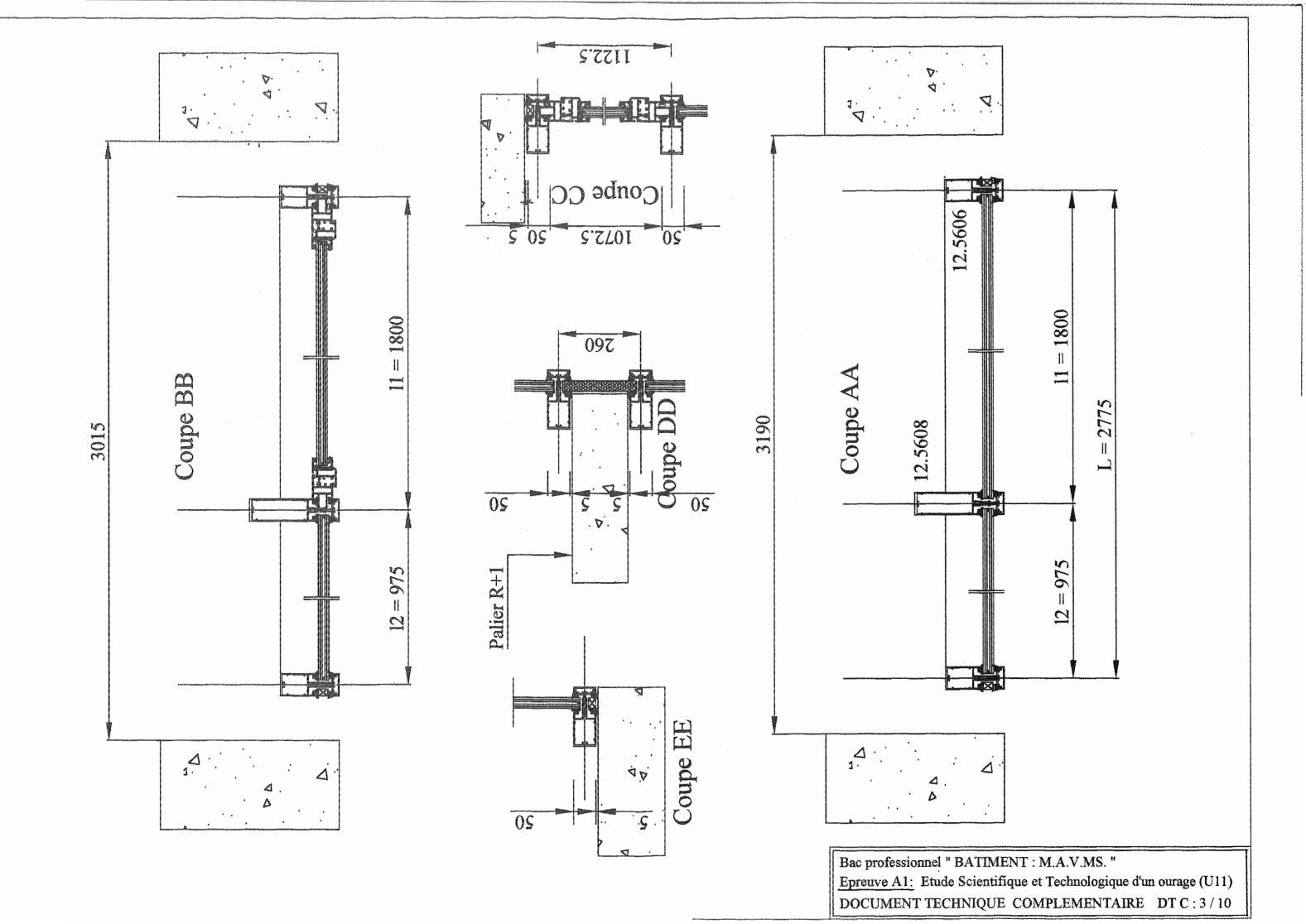
Lorsque la construction est située au-dessus d'une dénivellation de pente moyenne supérieure à 1 (angle > 45°), la hauteur au-dessus du sol doit être comptée à partir du pied de la dénivellation, sauf si la construction est située à une distance de celle-ci supérieure à deux fois la hauteur de cette dénivellation.


Extraits de la norme P06-002

7	Zone Situation		Hauteur en m au-dessus du sol					
Zone	Situation	H≤6	6 < H ≤ 18	18< H ≤ 28	$28 < H \le 50$	5 < H ≤100		
	a	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$		
	b	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_2^*E_4^*V_{A2}^*$	$A_2^*E_5^*V_{A2}^*$		
1	С	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_2^*E_4^*V_{A2}^*$	$A_2^*E_5^*V_{A2}^*$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A^*_3E^*_6V^*_{A3}$		
	d	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$		
	a	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$		
	ь	$A_2^*E_4^*V_{A2}^*$	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A^*_2E^*_4V^*_{A2}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$		
2	С	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$		
	d	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$		
	a	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$		
	ъ	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A^*_2E^*_4V^*_{A2}$	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$		
3	С	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	$A^*_3E^*_7V^*_{A3}$		
	d	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	$A^*_{3}E^*_{8}V^*_{A4}$		
	a	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$		
	ъ	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$		
4	c	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	$A^*_{3}E^*_{7}V^*_{A3}$	$A_{3}^{*}E_{8}^{*}V_{A4}^{*}$		
	d	$A_{3}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	$A^*_{3}E^*_{7}V^*_{A3}$	$A_{3}^{*}E_{8}^{*}V_{A4}^{*}$	$A^*_{3}E^*_{8}V^*_{A4}$		
	a	$A_2^*E_4^*V_{A2}^*$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{5}^{*}V_{A2}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$		
	ь	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{4}^{*}V_{A2}^{*}$	$A_{2}^{*}E_{6}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{7}^{*}V_{A3}^{*}$	A*3E*8V*A4		
5	С	A*2E*4V*A3	$A_{3}^{*}E_{4}^{*}V_{A3}^{*}$	$A_{3}^{*}E_{8}^{*}V_{A4}^{*}$	$A^*_{3}E^*_{8}V^*_{A4}$	$A^*_3E^*_8V^*_{A5}$		
	d	A*2E*4V*A3	$A_{3}^{*}E_{4}^{*}V_{A4}^{*}$	$A_{3}^{*}E_{8}^{*}V_{A4}^{*}$	$A^{*}_{3}E^{*}_{8}V^{*}_{A5}$	$A_3^*E_9^*V_{A5}$		

Bac Professionnel "BATIMENT: M.A.V.MS."

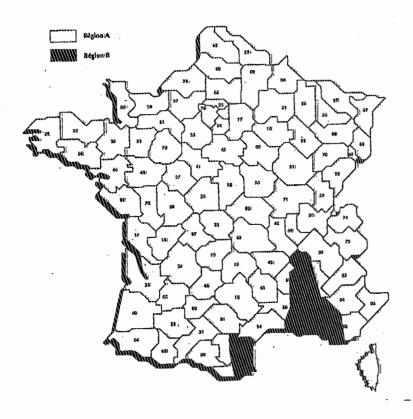
Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)
DOCUMENT TECHNIQUE COMPLEMENTAIRE DTC: 1/1


DTC: 1/10

Bac professionnel "BATIMENT : M.A.V.MS. "

Epreuve A1: Etude Scientifique et Technologique d'un ourage (U11)

DOCUMENT TECHNIQUE COMPLEMENTAIRE DT C: 2/10



Extraits du DTU 39

Carte de France des Vents

On distingue deux régions :

- la région A, en blanc sur la carte, pour une altitude inférieure à 1000 m
- la région B
 - o pour une altitude supérieure à 1000 m dans la zone A
 - o pour toute altitude dans les zones en noir sur la carte

La situation de la construction

On distingue 4 situations:

- * situation a : constructions situées à l'intérieur des grands centres urbains (villes où la moitié au moins des bâtiments ont plus de quatre niveaux)
- * situation b : constructions situées dans les villes petites et moyennes ou à la périphérie des grands centres urbains
- * situation c : constructions isolées en rase campagne
- * situation d : constructions isolées en bord de mer ou situées dans les villes côtières lorsque ces constructions sont à une distance du littoral inférieure à 15 fois leur hauteur réelle.

	Pressic	n de vent e	n Pa en for	action de l'e	exposition				
Hauteur du		Régi	on A		THE THE PERSON CONTROL THE PERSON CONTROL TO SERVICE THE PERSON CONTROL THE PERSON CONTROL THE PERSON CONTROL THE PERSON CONTROL TO SERVICE THE PERSON CONTROL THE PERSON C	Région B	TAKAN TANALARI TAKAN ALAMANIY SERTAM PRO-AND JAMPANA PROMINING PRO		
Vitrage au-dessus		Situation				Situation			
du sol en m	a	ь	С	d	a	ь	С		
≤6 m	600	600	900	1400	800	900	1300		
6 < h ≤ 18	600	800	1100	1600	900	1100	1600		
18 < h ≤ 28	700	900	1200	1700	1000	1300	1800		
28 < h ≤ 50	900	1100	1300	1800	1300	1600	2000		
50 < h ≤ 100	1100	1300	1500	1900	1700	2000	2300		

Tableau d'équivalence des vitrages			
Type de produit verrier	Coefficient		
Vitrage simple	1		
Verre armé et glace armée	1,2		
Glace trempée			
Si P ≤ 900Pa	0,8		
Glace trempée			
Si P > 900Pa	0,75		
Feuilleté 2 composants	1,3		
Feuilleté 3 composants	1,6		
Vitrage isolant 2 composants	1,5		
Vitrage isolant 3 composants	1,7		

Tolérances de fabrication						
Epaisseur En mm	Tolérances					
2						
3						
4	+ ou - 0.2 mm					
5						
6						
8						
10	+ ou - 0,3 mm					
12						
15	+ ou - 0,5 mm					
19	+ ou – 1 mm					

Facteur de réduction des châssis :

- châssis mobile C = 1
- châssis fixe C = 0.9

Bac Professionnel "BATIMENT: M.A.V.MS."

Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)

DOCUMENT TECHNIQUE COMPLEMENTAIRE DTC: 4/

DTC: 4/10

Extraits du DTU 39

Formules de calcul:

S: Surface en m2

L : Longueur en m

1 : Largeur en m

P: Pression en Pa

Surface maximale des vitrages participant à la protection contre la chute des corps						
Produits	33/2	44/2	55/2	66/2		
Surface maximum en m²	0,5	2	4,5	6		

Appui sur 4 cotés

$$\frac{L}{1} \le 3 \qquad e = \sqrt{\frac{SP}{72}} C \varepsilon$$

$$\frac{L}{l} > 3$$

$$e = \frac{l\sqrt{P}}{4.9}xCx\varepsilon$$

Appui sur 3 cotés

$$e=\frac{l\sqrt{P}}{4,9}C\varepsilon$$

$$rac{L}{l} \leq$$

$$e = \sqrt{\frac{SP}{24}}C\varepsilon$$

$$\frac{L}{l} > 9$$

$$e = \frac{3l\sqrt{P}}{4.9}C\varepsilon$$

Appui sur 2 cotés

$$e = \frac{l\sqrt{P}}{4.9}C$$

$$e = \frac{L\sqrt{P}}{4,9}C\varepsilon$$

MOMENTS QUADRATIQUES

Formule de calcul pour des profils avec traverses soumis au vent Charges rectangulaires

$$I = \frac{5PaL^4}{384(7.10^{10})}f$$

I: Moment quadratique en cm4

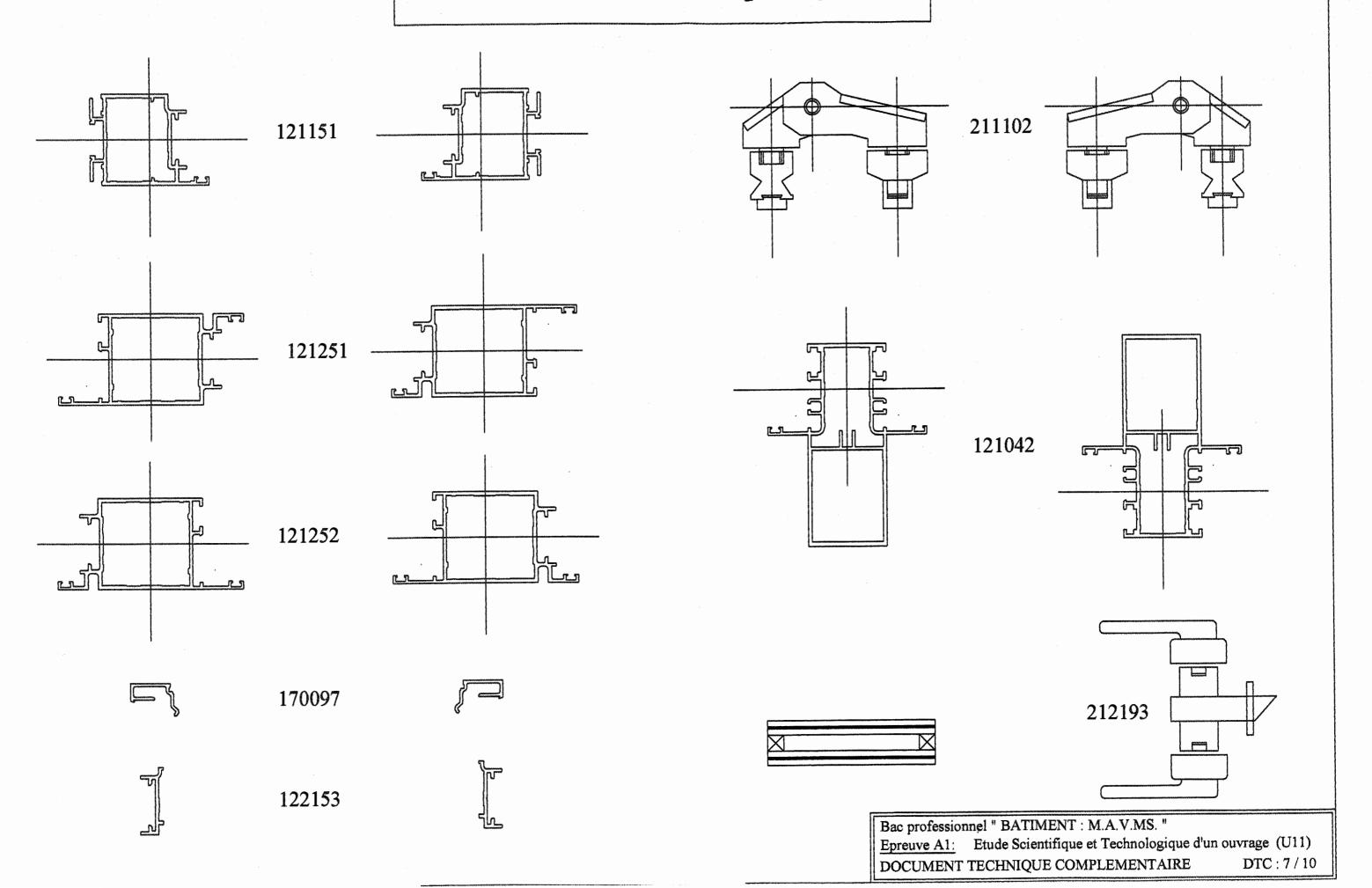
P: Pression en Pa

L: distance entre appui en cm

f: flèche (f: L/F, F=condition de flèche)

a : Largeur de reprise de charge en cm

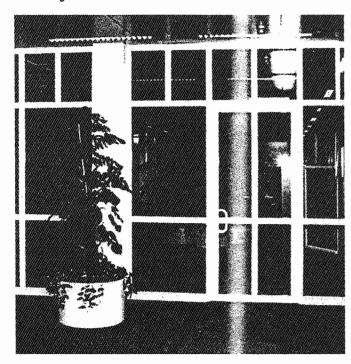
Nomenclature profilés


REFERENCE	DESIGNATION	PROFILES	L.stock	Condition.	INERTIES		x-y-x	
			L.st	Con	l(x) cm4	i(x)/v cm3	l(y) cm4	l(y)/v cm3
12.5606.XX	MENEAU DE 80		6,50	-	99.43	15.97	24.42	9.77
12.5807.XX	MENEAU DE 120		6,50	-	275.45	31.76	35.08	14.02
12.5608.XX	MENEAU DE 170		6,50	-	615.37	55.27	54.02	21.60
12.5609.XX	MENEAU DE 220		6,50	-	1455.9	99.71	83.66	33.46

Bac Professionnel "BATIMENT: M.A.V.MS."

Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)
DOCUMENT TECHNIQUE COMPLEMENTAIRE DTC: 6 / 1

DTC: 6/10


Profils et accessoires pour porte

FICHES PRODUITS 1

SGG FIVESTAR®

Vitrage non isolé classé Pare-Flammes ou EW

DEFINITION ET PRINCIPE DE FABRICATION

SGGFIVESTAR est un vitrage de protection Incendie et de sécurité selon la norme EN 12150, élaboré suivant un Procédé spécial comportant un traitement thermique de très haute performance.

Sans armature ni intercalaire, CGG FIVESTAR est un vitrage monolithique clair d'une transparence totale, sans phénornène de vieillissement, même en présence d'UV et qui peut être utilisé en intérieur, même à proximité de corps de chauffe

CGG FIVESTAR est à la fois le plus mince (épaisseur 5 mm), le plus léger et le plus économique des vitrages de protection incendie non armés de la famille SAINT-GOBAIN GLASS PROTECT FEU.

SGCFIVETAR est le vitrage idéal pour réaliser des éléments de construction vitrés économiques étanches aux flammes et aux gaz chauds pendant 30 minutes, E30.

POSSIBILITÉS DE FABRICATION ET DIMENSIONS

CGG FIVESTAR existe uniquement en vitrage monolithique clair. En général, il n'est pas fourni de volumes en forme sauf pour utilisation en oculus de portes résistant au feu. Les dimensions maximales autorisées sont indiquées dans les homologations et procès-verbaux.

APPLICATIONS

Mince, robuste et léger, SGG FIVESTAR est le vitrage idéal pour réaliser des ouvrages économiques résistant au feu. SGG FIVESTAR a déjà été testé et homologué dans des cloisons de longueur infinie à ossatures diverses ou incorporé dans des cloisons légères et/ou dans des portes de tout type, largement vitrées ou pleines avec oculus.

MARQUAGE ET MISE EN ŒUVRE

Très facile d'emploi, il se stocke, se transporte, se manipule et se pose alsément. La mise en œuvre doit être strictement conforme aux homologations et autorisations d'emploi disponibles et en cours de validité. SGGFIVESTAR est toujours identifié par un marquage spécifique indélébile.

SGGPYROSWISS®

Vitrage non isolé classé Pare-flammes ou E

DÉFINITION ET PRINCIPE DE FABRICATION

SGGPYROSWISS est un vitrage ayant reçu des traitements thermiques spécifiques, trempes hautes performances et Heat Soak Test, associés à un procédé de fabrication rigoureux qui lui confèrent d'excellentes qualités de résistance au feu.

SGGPYROSWISS est un vitrage destiné aux ouvrages devant satisfaire aux critères d'étanchéité aux fiammes et aux gaz chauds pendant l'incendie, E 30, E 60 et plus. C'est aussi un vitrage de sécurité à part entière selon la norme EN 12150.

Un programme strict d'assurance qualité, avec surveillance par tierce partie, garantit la conformité constante des vitrages. Il peut être fourni en très grandes dimensions ou en forme. SGGPYROSWISS offre une très bonne qualité optique permanente en pose extérieure comme intérieure. d'utilisation et ne peut être ni découpé, ni façonné après livraison

Soch-83

GAMME

La gamme SGGPYROSWISS comprend principalement trois produits :

- SGGPYROSWISS est fabriqué sur la base d'une glace silico-sodo-calcique d'origine et de qualité définies.
 Il existe en épaisseurs de 6, 8 et10 mm et même, pour des applications particulières, pour la marine
 par exemple, en 12, 15 et 19 mm. Il permet de fabriquer des éléments de construction vitrés capables
 de résister au feu, étanches aux flammes et au gaz chauds pendant 30 minutes.
 SGGPYROSWISS a déjà été testé, selon les besoins, dans des applications décoratives ou de contrôle solaire, sur des supports SGGPARSOL,
 SGGANTELIO, SGGSATINOVO. Il est très important de vérifier que les homologations ou les procès verbaux de classement correspondants sont disponibles.
- SGGPYROSWISSPLUS est une évolution permettant d'obtenir des classements supérieurs à E 30, par exemple E 60, dans des éléments de construction vitrés étanches aux flammes et aux gaz chauds. SGGPYROSWISS PLUS a été testé et homologué spécifiquement pour de grands projets. Il est indispensable de vérifier la disponibilité des homologations ou procès verbaux de classements correspondants. Fabriqué sur d'une glace silico-sodo-extra-claire d'origine et de qualité définies, il existe en épaisseur 6, 8 et 10 mm. C'est également un verre de sécurité offrant une qualité optique et des performances de transmission lumineuse analogues à celles de la glace Extra-Diamant.
- SGGPYROSWISS EXTRA est fabriqué à partir d'un nouveau verre float spécialement mis au point par le Centre de recherche de SAINT-GOBAIN. Il est destiné aux ouvrages et éléments de construction vitrés étanches aux flammes et aux gaz chauds avec des classements de longues durées supérieurs ou égaux à E 60. Ce nouveau vitrage aux propriétés physiques remarquables présente toutes les qualités nécessaires en cas de panique de la foule et pour la sécurité d'utilisation

PRODUITS TRANSFORMÉS

Les trois produits SGGPYROSWISS peuvent être assemblés en double-vitrage (voir SGGCLIMALIT et SGGCIIMAPLUS PROTECT FEU) utilisable en extérieur sans restriction ou en vitrage Feuilleté de sécurité avec pratiquement tous les vitrages de contrôle solaire, d'Isolation Thermique Renforcée et d'isolation acoustique de la famille SAINT-GOBAIN GLASS COMFORT ou les vitrages de la famille SAINT-GOBAIN GLASS DESIGN (SGG MASTERGLASS...).

APPLICATIONS

Très résistant aux chocs, il est apte à être utilisé dans des éléments de compartimentage, portes et cloisons, susceptibles d'être exposés aux heurts dus à la panique de la foule.

Solutions testées et homologations disponibles : cloisons de longueur infinie et portes de tout type, modules de façades, écrans de cantonnement suspendus. Selon le type d'encadrement, les classements obtenus pour des éléments étanches aux flammes et aux gaz chauds comportent des durées de 30 à 90 minutes, E 30, E 60 et E 90.

MARQUAGE ET MISE EN ŒUVRE

SGGPYROSWISS est facile à transporter et à manipuler en particulier sur chantier.

La mise en œuvre doit être strictement conforme aux homologations et autorisations d'emploi disponibles et en cours de validité.

Tous les vitrages SGGPYROSWISS sont identifiés après découpe par un marquage spécifique indélébile.

Bac Professionnel "BATIMENT: M.A.V.MS."

Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)

DOCUMENT TECHNIQUE COMPLEMENTAIRE

DTC: 8 / 10

FICHES PRODUITS 2

SGGSWISSFLAM LITE

Vitrage non isolé classé Pare-Flammes, E ou EW

DEFINITION ET PRINCIPE DE FABRICATION

SGGSWISSFLAM LITE est un vitrage feuilleté à intercalaire intumescent clair et transparent, d'épaisseur 10 mm, pour classements E 30 et E 60 ou EW 30 à 60. Il existe également une version renforcée avec PVB.

L'intercalaire intumescent de SGGSWISSFLAM LITE est incolore et pratiquement insensible aux UV ce qui autorise son utilisation en extérieur assemblé en double-vitrage

PROPRIETES PHYSIQUES

Nous consulter.

POSSIBILITES DE FABRICATION

SGG SWISSFLAM LITE E60-W60	
Composition	Simple vitrage
Epaisseur	10
Dimensions mini mesure fixe	200 x 300 mm
Dimensions maxi mesure fixe	1940 x 3150 mm
Tolérances sur dimensions	+- 2 mm
Tolérances sur épaisseur	+-1 mm
Poids unitaire Kg/m²	21
Résistance aux UV	OUI
Utilisation en double vitrage,	oui
Températures limites d'utilisation (admises dans le gel ou l'intumescent)	-15,+ 45

APPLICATIONS

SGGSWISSFLAM LITE est un vitrage mince destiné aux ouvrages devant satisfaire aux critères d'étanchéité aux flammes et aux gaz pendant des durées de 30 ou 60 mn (et même exceptionnellement 90 mn), et simultanément de limitation du flux calorifique maximum, critère optionnel W, classements EW 30 ou EW 60.

SGGSWISSFLAM LITE peut être utilisé en intérieur, sauf à proximité de corps de chauffe ou en double-vitrage en extérieur. Dans ce dernier cas, des précautions sont à prendre pour respecter les températures limites d'utilisation du produit: -15, + 45 °C (températures extrêmes admises dans l'intercalaire inturnescent). Nous consulter.

Solutions testées et homologations disponibles ou en cours: bandes filantes d'éclairage, châssis, cloisons longueur infinie, portes tout type. En double-vitrage : cloisons, portes et éléments de façade. Les encadrements utilisés peuvent être en bois, en acier et même à base d'aluminium selon la performance recherchée.

MARQUAGE ET MISE EN ŒUVRE

SGGSWISSFLAM LITE est fabriqué et stocké en plateau. Il est ensuite découpé à la demande en mesure fixe sous court délai. La mise en œuvre doit être strictement conforme aux homologations et autorisations d'emploi disponibles et en cours de validité. Après découpe en mesure fixe, les vitrages SGGSWISSFLAM LITE sont marqués par un marquage indélébile.

SGGVETROFLAM®

Vitrage non isolé classé Pare-Flammes, E ou EW

DEFINITION ET PRINCIPE DE FABRICATION

SGGVETROFLAM est fabriqué à partir de glaces revêtues de couches d'oxydes métalliques appropriées et ayant subi des traitements thermiques spécifiques, trempes hautes performances et Heat Soak Test, associés à un procédé de fabrication rigoureux qui lui confèrent d'excellentes qualités de résistance au feu. Un programme strict d'assurance qualité, avec surveillance par tierce partie, garantit la conformité constante des vitrages.

SGGVETROFLAM est un vitrage destiné aux ouvrages devant satisfaire pendant 30 à 60 mn aux critères d'étanchéité aux flammes et aux gaz chauds pendant l'incendie, classés E 30 et E 60. Ses caractéristiques particulières permettent de limiter le flux calorifique maximum, critère optionnel W, classements EW 30 ou EW 60.

D'une grande qualité optique permanente, en pose intérieure comme en extérieur, SGGVETROFLAM présente de plus, en double vitrage, d'intéressantes caractéristiques d'isolation thermique renforcée. Il peut être fourni en très grandes dimensions ou en forme. SGGVETROFLAM est fabriqué uniquement en mesure fixe et ne peut être ni façonné, ni découpé après livraison. C'est un vitrage de sécurité selon la norme EN 12150.

POSSIBILITE DE FABRICATION

SGGVETROFLAM existe en simple vitrage d'épaisseur 6 mm. Il peut être fabriqué en 8 mm. En version feuilleté de sécurité, il est composé de deux SGGVETROFLAM, pour des applications avec sens du feu non défini, soit d'un SGGVETROFLAM et d'une glace trempée SGGSECURIT d'épaisseur 6 mm, pour des applications avec sens du feu défini. De la même façon, en double vitrage, l'association avec de très nombreux produits de la gamme SAINT-GOBAIN GIASS est possible selon les homologations disponibles.

APPLICATIONS

SGGVETROFLAM s'utilise sans restriction en intérieur comme en extérieur.

Solutions testées et homologations existantes: cloisons longueur infinie, portes de tout type, façades et modules de façade avec ossatures bois, acier ou acier et aluminium, Selon le type d'encadrement, les classements obtenus pour des éléments étanches aux flammes et aux gaz chauds comportent des durées de 30, 60 ou 90 mn (avec montage spécial). E30, E 60 ou E 90 et, en tenant compte de la limitation du flux calorifique maximum pendant l'incendie, EW 30 et EW 60.

MARQUAGE ET MISE EN ŒUVRE

Très robuste, il est facile à transporter et à manipuler en particulier sur chantier.

La mise en œuvre doit être strictement conforme aux homologations et autorisations d'emploi disponibles et en cours de validité. Tous les vitrages SGGVETROFLAM sont identifiés après découpe par un marquage indélébile.

Bac Professionnel "BATIMENT: M.A.V.MS."

Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)

DOCUMENT TECHNIQUE COMPLEMENTAIRE

DTC: 9/10

EXTRAITS DES PROCES VERBAUX D'ESSAIS

Système Mannesmann Acier

No PV	Classement	Série	Type d'ouvrage	Produit	Dimensions L x H nun
89-U-206	PF ½ h	40 Hermetic	Châssis fixe	PYROSWISS 6	1606 x 2486
89-U-207	PF ½ h	40 Hermetic	Châssis fixe	PYROSWSS 10	2035 x 3080
93-V-287	PF ½ h	40 Hermetic		DV Vf 6 + air + Vf 6	2130 x 1690
75-1-207	11 /211	10 110111101110	Cloison/façade	DV Vf 6 + air + Vf 6	1690 x 2130
				DV Vf 6 + air + 6T	2130 x 1690
				DV Vf 6 + air + 44.2	2130 x 1690
95-A-036	PF ½ h	40 Hermetic		PYROSWISS 6	1240 x 1260
75 11 050	1	10 210233012		PYROSWISS 6	1260 x 2260
	1		Cloison/façade	PYROSWISS 8	1260 x 2180
				PYROSWISS 10	1260 x 2800
				DV Py6 + air + 6T ou 44.2	1260 x 1260
			•	DV Py 6 + air + Py 6	1260 x 1260
	PF ½ h	40 Hermetic	Porte deux vantaux inégaux dans cloison	PYROSWISS 6	1260 x 2260
	PF ½ h	40 Hermetic	Porte deux vantaux inégaux dans cloison	DV Py 6 + air + 44.2	1260 x 1260
95-U-192	PF ½ h	40 Standard	Cloison	FIVESTAR	1000 x 1250
95-V-303	PF ½ h	Isotrame	Cloison/façade	DV Vf 6 + air + 4T	1340 x 1960
75-4-505	11 /211	2500200	Cioloni inquit	DV Vf 6 + air + 33.2	1340 x 1960
95-A-457	PF 1 h	40 Standard	Cloison	Vetroflam 66.2	1360 x 2220
/J-A-131	PF ½ h	40 Standard	Cloison	Vetroflam 66.2	1500 x 2440
	PF ½ h	40 Standard	Cloison	Vetroflam 66.2	2260 x 1390
95-A-458	PF 1 h	Isotrame	Cloison/façade	Vetroflam 66.2	1347 x 2220
95-A-458	PF ½ h	Isotrame	Cloison/façade	Vetroflam 66.2	1480 x 2440
	PF ½ h	Isotrame	Cloison/façade	Vetroflam 66.2	2260 x 1390
05 4 465	PF 1 h	Isotrame	Cloison/façade	Vetroflam 6	1900 x 1200
95-A-465	PF ½ h	Isotrame	Cloison/façade	Vetroflam 6	2088 x 1318
05 4 500		40 Standard	Porte 1 vantail dans cloison	FIVESTAR	1000 x 1250
95-A-528	PF ½ h	40 Standard 40 Standard	Porte 2 vantaux	FIVESTAR	1000 x 1250
95-A-529	PF ½ h PF ¾ h	40 Hermetic		PYROSWISS 8	690 x 2300
96-A-040			Porte 2 vantaux va et vient	Vetroflam 66.2	3090 x 815
96-V-149	PF 1 h	40 Standard	Garde corps		1976 x 555
96-V-155	PF 1 h	40 Hermetic	Porte 2 vantaux dans cloison	Vetroflam 6 Fixe	840 x 2073
	DE 11	40.77	D-4-2	Vetroflam 6 Ouvrant	840 x 2073
06.77.00.5	PF 1 h	40 Hermetic	Porte 2 vantaux inégaux dans cloison	Vetroflam 6 Ouvrant	
96-V-225	PF 1 h	Isotrame	Cloison/façade	DV VF 6 + air + 6T	2920 x 1835
	PF 1 h	Isotrame	Cloison/façade	DV VF 6 + air + 44.2	2920 x 1835
	PF 3/4 h	Isotrame	Cloison/façade	DV VF 6 + air + 6T	1670 x 2650
96-A-243	PF ½ h	40 Hermetic	Cloison vitrage rectangulaire	PYROSWISS 6	900 x 2231
96-V-288	PF ½ h	40 Hermetic	Cloison	PYROSWISS 6 et 8	1 605 x 2485
	PF ½ h	40 Hermetic	Cloison	PYROSWISS 10	2035 x 3080
	PF ½ h	40 Hermetic	Ouvrant de service dans cloison	PYROSWISS 6	845 x 1150
	PF ½ h	40 Hermetic	Cloison	PYROSWISS 6	1890 x 1890
	PF ½ h	40 Hermetic	Cloison/façade	DV Py 6 + air + 6Tou 44.2	1370 x 1650
	PF ½ h	40 Hermetic	Cloison/façade	DV Py 6 + air + 6Tou 44.2	1550 x 1940
	PF ½ h	40 Hermetic	Cloison/façade	DV Py 6 + air + 6Tou 44.2	1940 x 1550
	PF ½ h	40 Hermetic	Cloison	PYROSWISS 6, 8, 10	620<0<1320
	PF ½ h	40 Hermetic	Châssis fixe tête ceintrée	PYROSWISS 6, 8, 10	1200 x 2200
	PF ½ h	40 Hermetic	Cloison/façade	DV Py 6 + air + 6Tou 44.2	1200 x 1600
97-A-298	PF ½ h	Isotrame	Cloison/façade	DV Py6 + air + 44.2 ou 66.2	1500 x 1820
98-V-018	PF ½ h	40 Hermetic	Porte deux vantaux dans cloison	PYROSWISS EXTRA 6	2075 x 775
					1110 x 2195
98-U-365	PF ½ h	40 Standard	Cloison	Vetroflam DV	1300 x 2360

Bac Professionnel "BATIMENT: M.A.V.MS."

Epreuve A1: Etude Scientifique et Technologique d'un ouvrage (U11)

DOCUMENT TECHNIQUE COMPLEMENTAIRE DTC: 10/10