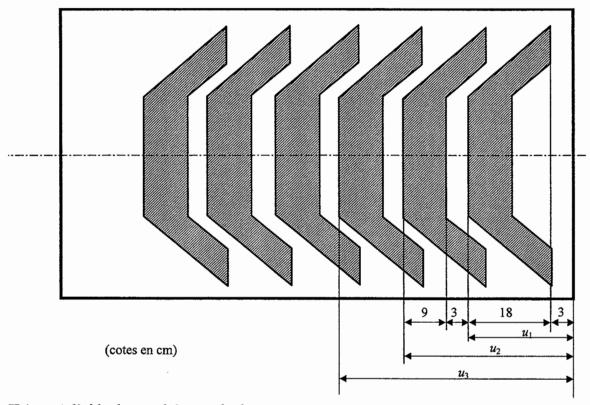

Toutes académies Session 2005			Code(s) examens(s)	
•	LAUREAT PROFESSIO S MATERIAUX - Option : Indu		0506 MOM IT ST	
Epreuve: Mathématiques et sciences physiques - E1 - U1				
Coefficient: 3	Durée : 2 heures	Feuillet:	1/6	

MATHÉMATIQUES (13 points)

Une société fabrique des bagages. La réalisation d'un sac de voyage nécessite des renforts en matériau synthétique dont la forme est donnée ci-dessous.

Les dimensions sont en centimètres.
L'axe KI est un axe de symétrie.
J est le milieu de [KI].
Les segments [CD] et [EF] sont parallèles.


EXERCICE I : Tracé d'un demi renfort et calcul de l'aire d'un renfort. (4 points)

- I.1.a. Calculer l'aire du trapèze ABCD.
- I.1.b. En déduire, en cm², l'aire du renfort, arrondir le résultat à l'unité.
- I.2.a. Sur le quadrillage de l'annexe 1 page 5/6, à rendre avec la copie, en utilisant les points K et D déjà placés, dessiner le **demi** renfort ICDEFJ, à l'échelle 1/2.
- I.2.b. En mesurant sur ce dessin, donner une valeur arrondie au centimètre de la largueur réelle de la bande FEDC.

Toutes académies Session 2005			Code(s) examens(s)
Sujet BACCALAUREAT PROFESSIONNEL MISE EN ŒUVRE DES MATERIAUX - Option : Industries Textiles			0506 MOM IT ST
Epreuve: Mathématiques et sciences physiques - E1 - U1			
Coefficient : 3 Durée : 2 heures Feuillet			2/6

EXERCICE II : Étude du découpage des renforts. (4 points)

Les renforts sont découpés dans une bande de 500 cm de longueur et de 75 cm de largeur selon le schéma ci-dessous :

- II.1.a. A l'aide de ce schéma, calculer u_1 , u_2 , u_3 .
- II.1.b. Montrer que u_1 , u_2 et u_3 sont les trois premiers termes d'une suite arithmétique. Quelle est la raison de cette suite?
- II.2.a. On admet que pour n renforts, la longueur de bande nécessaire u_n peut s'exprimer par : $u_n = 21 + 12 (n-1)$

Montrer que le nombre de renforts que l'on peut découper est solution de l'inéquation :

$$12 n + 9 \le 500$$

- II.2.b. Résoudre cette inéquation. En déduire le nombre maximum de renforts que l'on peut découper.
- II.3.a. Calculer l'aire de la bande avant découpe.
- II.3.b. Sachant que l'aire d'un renfort est égal à 560 cm², calculer l'aire totale des renforts que l'on peut découper dans cette bande.
- II.3.c. En déduire l'aire des pertes. Calculer le pourcentage, arrondi à l'unité, que représente l'aire des pertes par rapport à l'aire de l'ensemble des renforts.

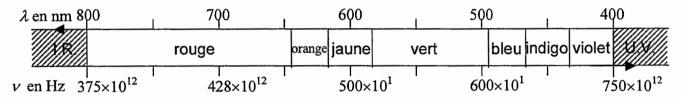
Toutes académies Session 2005			Code(s) examens(s)
1 9	LAUREAT PROFESSION CS MATERIAUX - Option : Indus		0506
Epreuve : Mathémati	MOM IT ST		
Coefficient: 3	Durée : 2 heures	Feuillet:	3/6

EXERCICE III : Étude de l'importance des pertes de matière. (5 points)

On constate que le rapport entre matière perdue et matière utilisée dans une bande est donné par la relation :

$$R = \frac{67}{n} - 1$$
 où *n* représente le nombre de renforts découpés.

- III.1. Soit la fonction f définie sur l'intervalle [20; 40] par $f(x) = \frac{67}{x} 1$.
 - III.1.a. Compléter le tableau de valeurs de l'annexe 2 page 6/6 à rendre avec la copie. Arrondir les résultats au centième.
 - III.1.b. On note f' la fonction dérivée de la fonction f. Calculer f'(x).
 - III.1.c. Quel est le signe de f'(x) sur l'intervalle [20 ; 40] ? En déduire le tableau de variations de la fonction f.
 - III.1.d. En utilisant le repère de l'annexe 2 page 6/6, tracer la courbe C représentative de la fonction f sur l'intervalle [20; 40].
- III.2. Le chef de production souhaite que le rapport entre pertes et matière utile soit inférieur à 1. Déterminer graphiquement sur l'annexe 2 page 6/6, le nombre minimum de renforts qu'il faut fabriquer. Laisser apparents les traits utiles à la lecture.


Toutes académies Session 2005			Code(s) examens(s)	
Sujet BACCALAUREAT PROFESSIONNEL MISE EN ŒUVRE DES MATERIAUX - Option : Industries Textiles			0506 MOM IT ST	
Epreuve: Mathématiques et sciences physiques - E1 - U1				
Coefficient: 3 Durée: 2 heures Feuillet:			4/6	

SCIENCES PHYSIQUES (7 points)

EXERCICE IV (3 points)

Le découpage de renforts de sacs de voyage est réalisé par un appareil équipé d'un rayon laser rouge.

IV.1. En utilisant le spectre des couleurs donné ci-dessous, indiquer dans quelle gamme de longueur d'onde se situe le rayon émis par le laser.

- IV .2. Le rayon laser utilisé a une longueur d'onde de 650 nm. Exprimer cette longueur d'onde en mètres.
- IV.3. Calculer, en hertz, la fréquence ν du rayon laser. Donner le résultat sous la forme $a \times 10^{12}$ où a est un nombre entier.

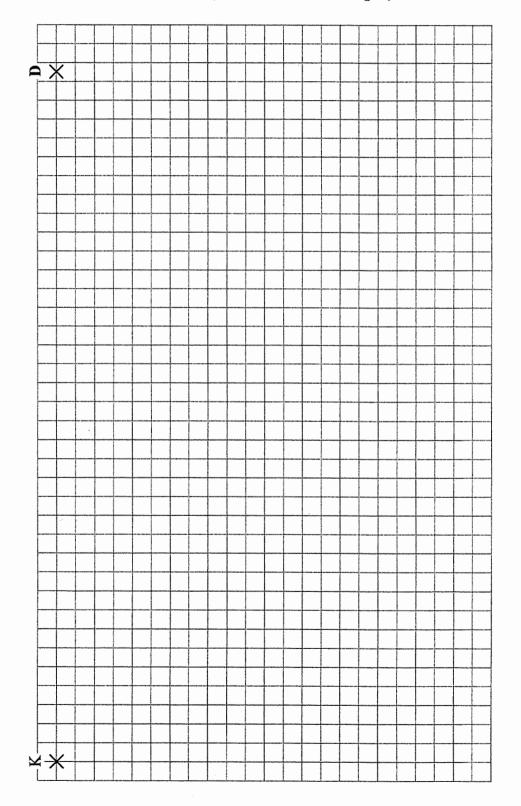
On donne: $\lambda = \frac{c}{v}$ avec

 λ : longueur d'onde en mètres

v: fréquence en hertz.

c: vitesse de la lumière dans le vide = 3.0×10^8 m/s.

EXERCICE V (4 points)

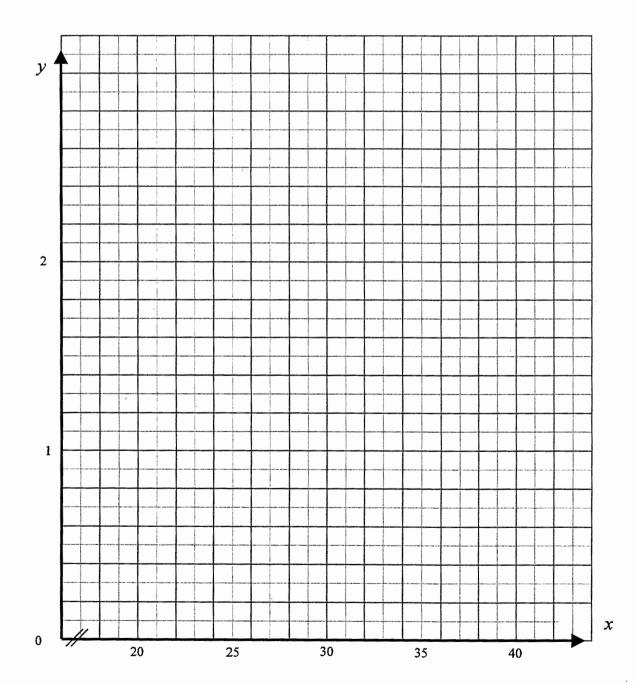

Les renforts des sacs de voyage sont réalisés avec du polychlorure de vinyle (PVC). Le PVC est obtenu à partir du monomère appelé chlorure de vinyle de formule brute C_2 H_3 Cl.

- V.1. Calculer la masse molaire moléculaire du chlorure de vinyle.
- V.2. Donner la formule développée du chlorure de vinyle.
- V.3. Représenter une chaîne comprenant 2 motifs de la macromolécule de PVC.
- V.4. La polymérisation du PVC est-elle une polyaddition ou une polycondensation ? Justifier.

Masses molaires atomiques: M(H) = 1 g/mol M(C) = 12 g/mol M(Cl) = 35,5 g/mol

Toutes académies Session 2005			Code(s) examens(s)	
Sujet BACCALAUREAT PROFESSIONNEL MISE EN ŒUVRE DES MATERIAUX - Option : Industries Textiles			0506 MOM IT ST	
Epreuve: Mathématiques et sciences physiques - E1 - U1				MOMIN 51
Coefficient : 3 Durée : 2 heures Feuillet : 5/6			5/6	

Annexe 1 (à rendre avec la copie)



Toutes académies Session 2005			Code(s) examens(s)	
Sujet BACCALAUREAT PROFESSIONNEL MISE EN ŒUVRE DES MATERIAUX - Option : Industries Textiles			0506 MOM IT ST	
Epreuve: Mathématiques et sciences physiques - E1 - U1				
Coefficient: 3	Durée : 2 heures	Feuillet:	6/6	

Annexe 2 (à rendre avec la copie)

Tableau de valeurs

x	20	24	28	32	36	40
f(x)	2,35		1,39			0,68

FORMULAIRE DE MATHÉMATIQUES DU BACCALAUREAT PROFESSIONNEL

Secteur industriel: Artisanat, Bâtiment, Maintenance - Productique

(Arrêté du 9 mai 1995 - BO spécial n°11 du 15 juin 1995)

Fonction f	Dérivée f'
f(x)	f'(x)
ax + b	. a
x^2	,2x
x^3	$3x^2$
<u>1</u>	
x	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : ln

$$\ln (ab) = \ln a + \ln b$$

$$\ln (a^n) = n \ln a$$

$$\ln (a/b) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1:u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes:

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

$$\sin (a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos 2a = 2\cos^2 a - 1$$

$$=1-2\sin^2 a$$

$$\sin 2a = 2 \sin a \cos a$$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

$$\overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$$

Exart type
$$\sigma = \sqrt{V}$$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

$$\sin \widehat{B} = \frac{AC}{BC}$$
; $\cos \widehat{B} = \frac{AB}{BC}$; $\tan \widehat{B} = \frac{AC}{AB}$

Résolution de triangle

$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc \sin A$

Trapèze: $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume Bh Sphère de rayon R:

Aire:
$$4\pi R^2$$
 Volume: $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B et de hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$|\overrightarrow{v}.\overrightarrow{v'} = xx' + yy' ||\overrightarrow{v}|| = \sqrt{x^2 + y^2} ||\overrightarrow{v}|| = \sqrt{x^2 + y^2} ||\overrightarrow{v}|| = \sqrt{x^2 + y^2 + z^2} ||\overrightarrow{v}|| = \sqrt{x^2 + y^2 + z^2} ||\overrightarrow{v}|| = \sqrt{x^2 + y^2 + z^2} ||\overrightarrow{v}|| = \sqrt{x^2 + y^2 + z^2}$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$