MINISTERE DE L'EDUCATION NATIONALE

BACCALAUREAT PROFESSIONNEL

CARROSSERIE

OPTIONS: REPARATION ET CONSTRUCTION

Session: 2005

E 1 - EPREUVE SCIENTIFIQUE ET TECHNIQUE

SOUS - EPREUVE A1

UNITE U11

Etude fonctionnelle et structurelle d'un produit de carrosserie

Durée: 4h

Coefficient: 2

SOMMAIRE

Cette chemise comprend 2 dossiers :

Dossier ressources:

pages numérotées de DR 1/7 à DR 7/7

Dossier travail:

pages numérotées de DT 1/12 à DT 12/12

Seules les 12 pages DT sont à rendre en fin d'épreuve.

Bac Pro Carrosserie options Réparation et Construction

MINISTERE DE L'EDUCATION NATIONALE

BACCALAUREAT PROFESSIONNEL

CARROSSERIE

OPTIONS: REPARATION ET CONSTRUCTION

Session: 2005

E 1 - EPREUVE SCIENTIFIQUE ET TECHNIQUE

SOUS - EPREUVE A1

UNITE U11

Etude fonctionnelle et structurelle d'un produit de carrosserie

Durée: 4h

Coefficient: 2

DOSSIER TRAVAIL

Ce dossier travail comprend 12 pages numérotées de DT 1/12 à DT 12/12 :

DT 1/12 : Analyse fonctionnelle DT 2/12 : Modélisation de la table

DT 3/12 : Schéma cinématique / Schéma technologique

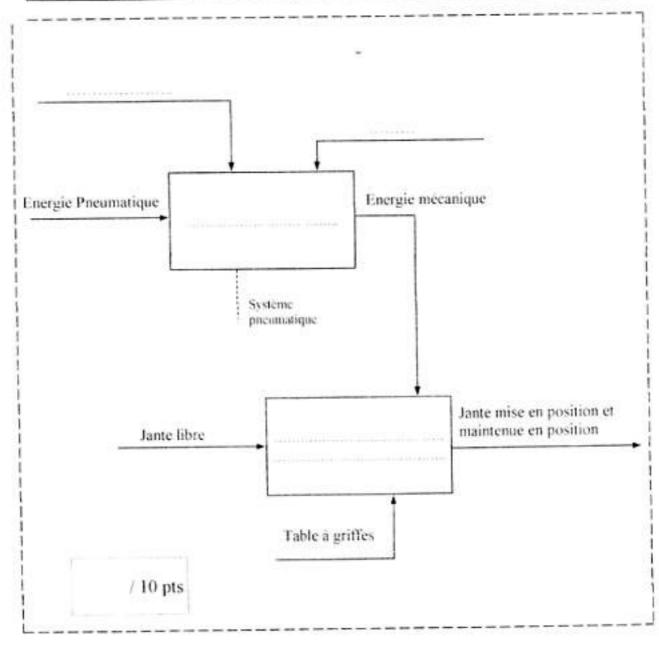
DT 4/12 : Questionnaire technologique

DT 5/12 : Travail graphique DT 6/12 à 8/12 : Cinématique DT 9/12 à 11/12 : Statique

DT 12/12 : Résistance des matériaux

Bac Pro Carrosserie options Réparation et Construction

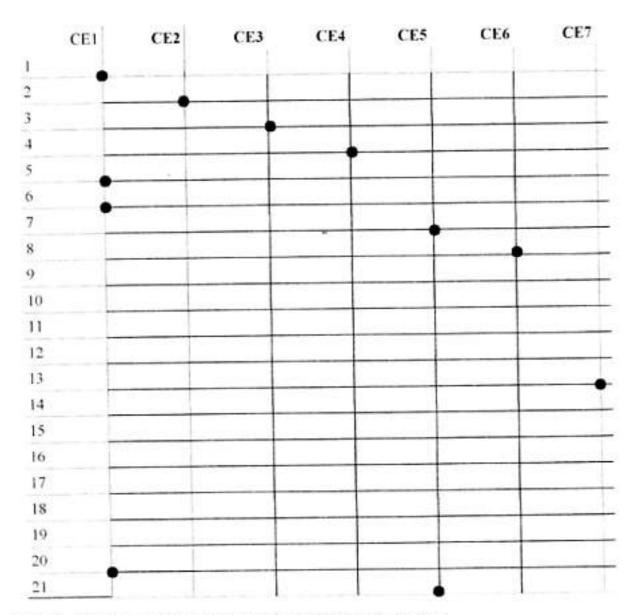
05-06 CAR STA


DT 1/12

1 - Analyse fonctionnelle

On donne le diagramme A-O de l'analyse fonctionnelle descendante (voir dossier ressource D R 2 / 7) et le diagramme incomplet ci-dessous.

Travail demandé : Complétez le diagramme ci-dessous en respectant les fonctions et les données proposées :


Fonctions	:	convertir de l'énergie positionner un pneumatique sur une jante
Données de contrôle ou contraintes	ŀ	air électricité opérateur

DT 2 / 12

2 - MODELISATION DE LA TABLE

2.1 A partir du plan d'ensemble (D.R.3 / 7), identifiez les classes d'équivalence cinétique (notées C.E.) (ou ensembles fonctionnels isocinétiques) et complétez le graphique en râteau ci-dessous. Les pièces déformables et joints ne sont pas classés.

2.2 Faites le bilan des C E en complétant les ensembles ci -dessous

CE1 =	{ I,
CE2=	{2
CE3 =	{3,
CE4 =	{ 4,
CE5=	{ 7,
CE6 =	{8,

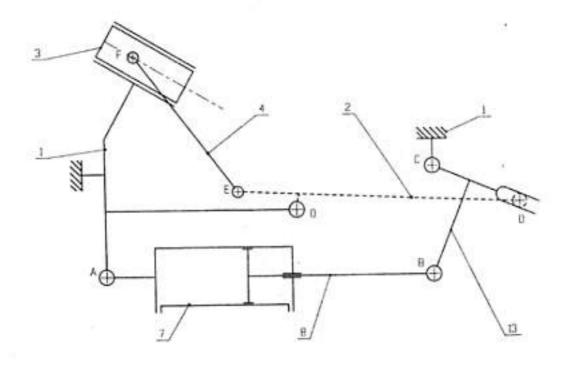
/ 15 pts

DT 3 / 12

2.3 Schéma cinématique

A l'aide des documents DT 3/12 et DR 3/7:

Indiquez les degrés de liberté, en reportant le nombre de translations et de rotations entre chaque classe d'équivalence (C.E), dans le tableau ci-dessous .


Nommez les liaisons entre les différentes classes d'équivalence cinématique.

Liaison.	Translation(s)	Rotation(s)	Nom de la liaison
CE1 - CE2	***	200	
CE1 - CE3	27 2945	777	
CE5 - CE6		2"	

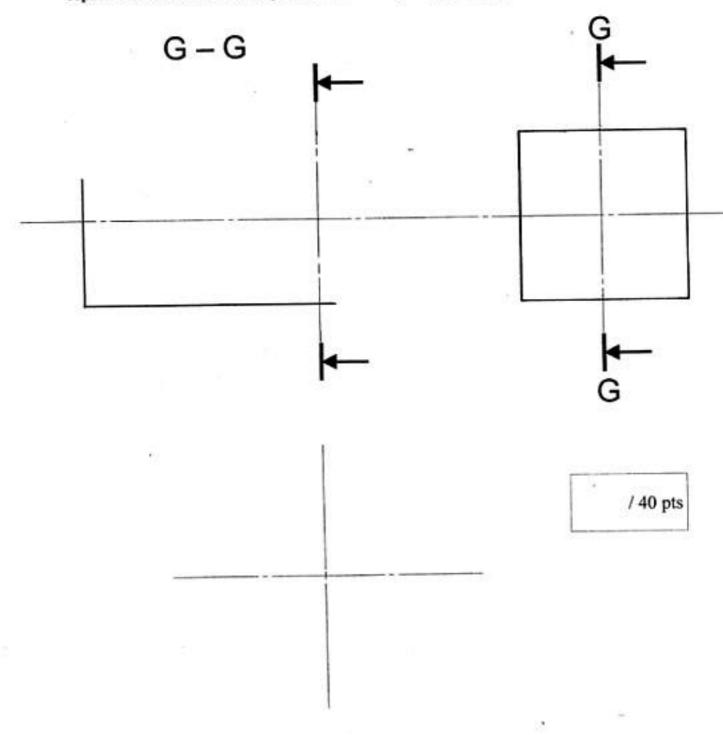
2.4 Schéma technologique

(Remarque : une seule griffe est représentée).

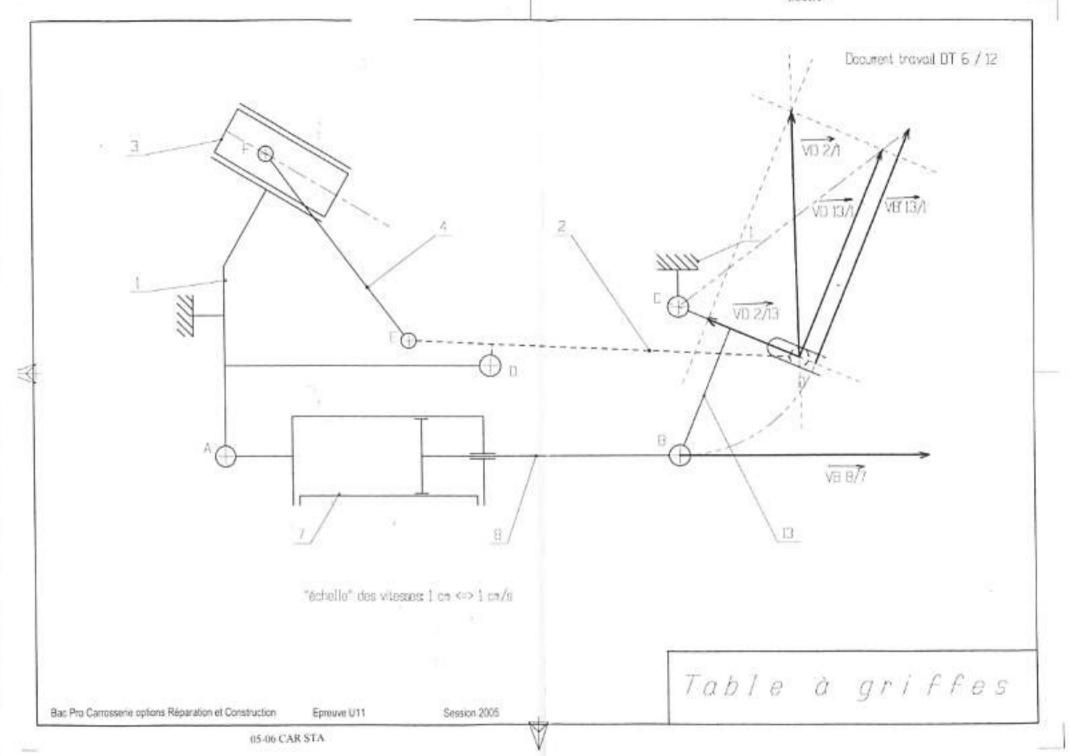
/ 12 pts

3. Questionnaire technologique

uments ressources,	notamment du DR 3 / 7).	110000000000000000000000000000000000000
		/6pts
.1 / Fonction de <u>19</u>		
.2 / Fonction de 11	<u>1</u> :	/6 pts
	doit tourner le plateau entraîneur 2 pour que les griffe	s <u>18</u> se
rapprochent vers le		0.000
	Sens « trigonométrique »	/2 pts
	Sens « horaire »	
Γ	Sortir de la tige 8 du vérin 7	
[Sortir de la tige <u>8</u> du vérin <u>7</u> Entrer de la tige <u>8</u> du vérin <u>7</u>	/2 pts
3.5 / Quand l'orifi	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a :	/2 pts
3.5 / Quand l'orifi	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a : Sortie de la tige <u>8</u> du vérin <u>7</u>	/2 pts
3.5 / Quand l'orifi	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a : Sortie de la tige <u>8</u> du vérin <u>7</u>	
3.6 / Expliquez l	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a : Sortie de la tige <u>8</u> du vérin <u>7</u> Rentrée de la tige <u>8</u> du vérin <u>7</u> es différents symboles de la cotation extraite du DR 3	721
3.6 / Expliquez l	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a : Sortie de la tige <u>8</u> du vérin <u>7</u> Rentrée de la tige <u>8</u> du vérin <u>7</u>	/2 p
3.6 / Expliquez l - 131 : - V :	Entrer de la tige <u>8</u> du vérin <u>7</u> ce T du vérin <u>7</u> est alimenté, on a : Sortie de la tige <u>8</u> du vérin <u>7</u> Rentrée de la tige <u>8</u> du vérin <u>7</u> es différents symboles de la cotation extraite du DR 3	/2 p


DT 5/12

4. Travail graphique


En vous aidant du document DR 3 / 7 (Dessin d'ensemble de la table à griffes, à l'éch.1:3), représentez graphiquement ci-dessous le dessin de définition (à l'éch.1:1) de la chape 2 suivant :

- ane vue de face en coupe GG (on prendra la vue de face du document DR 3 / 7)
- une vue de gauche
- une section sortie

reportez sur ce dessin les cotes permettant le montage de $\underline{8}$, $\underline{10}$, $\underline{13}$ (cotes de forme seulement).

05-06 CAR STA

Réponses données

5. Cinématique

Objectif: Déterminez la vitesse de déplacement du coulisseur porte-griffe 3 par rapport à la table 1 et ce, en fonction de la vitesse de sortie du vérin. L'étude sera faite dans le cas de la position définie sur le document travail DT 6 / 12.

Données: La vitesse de sortie de la tige du vérin est de 10 cm.s⁻¹.

Remarque: Les réponses aux questions 5.1, 5.2 et 5.3 vous sont données.

Les constructions seront faites sur le document DT 6 / 12.

5.1 .

Quelle est la nature du mouvement M't 8/7 ?

Réponse: Translation d'axe AB.

Tracez le vecteur vitesse $\overline{V_B 8/7}$ (Réponse: voir le tracé sur les DT6 / 12).

(L'échelle des vitesses utilisée est : 1 cm <=> 1 cm.s⁻¹)

5.2.

Sachant que 13 est en rotation par rapport à 1 autour de C, tracez le vecteur Vp 13/1.

$$(\overline{V_B 8/7} = \overline{V_{B'} 13/1})$$

Réponse:
$$\| \overline{V_p} \| = 8$$
, 8 cm.s⁻¹

5.3.

Quelle est la nature du mouvement Mst 2/13 ?

Réponse:M⁴ plan

Tracez la direction de V_D 2/13 (Réponse: voir le tracé sur les DT6 / 12)

Tracez la direction de V_D 2/1 (± à OD) (Réponse: voir le tracé sur les DT6 / 12)

5.4

Ecrivez la relation entre V_D 2/1 ; V_D 13/1 et V_D 2/13.

15

En déduire graphiquement | V_D 2/1 | =

15

05-06 CAR STA

DT	8/	12
-		-

5.5

Déduisez graphiquement $\overline{V_E 2/1}$ (M^M de rotation de $\underline{2} / \underline{1}$ autour du point O)

$$\| \overline{\mathbf{V}_{\mathbf{E}} \mathbf{2}/\mathbf{1}} \| = \dots$$
 /8

Tracez ce vecteur

/2

Nota: Pour les candidats n'ayant pas obtenu $\| \mathbf{V}_{E} \mathbf{2}/\mathbf{1} \|$, ils poursuivront l'étude avec $\| \mathbf{V}_{E} \mathbf{2}/\mathbf{1} \| = 2 \text{ cm.s}^{-1}$ (de direction \perp à OE).

Remarque: Cette étude pourra être traitée soit par la méthode dite du "CIR" ou de "l'équiprojective des vecteurs vitesse".

5.6

Quelle est la nature du mouvement M^{vt} 3 / 1?

/2

Quelle est la nature du mouvement M' 4 / 1 ?

12

5.7

Sachant que
$$\overline{V_E 2/1} = \overline{V_E 4/1}$$
 et $\overline{V_F 4/1} = \overline{V_F 3/1}$;

déterminez et tracez le Centre Instantané de Rotation (CIR) de la bielle 4 (noté I 4/0).

/4

5.8

A l'aide du CIR ou de l'équiprojectivité, déterminez V_F 3/1

5.9

Contrôlez si votre résultat (sens du vecteur) est en concordance avec la réponse

/2

à la question 3.5 :

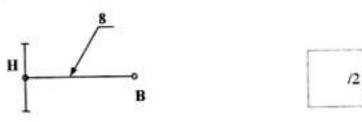
OUI ou NON

6° STATIQUE

OBJECTIF:

 Vérifier si le vérin utilisé et la pression de service du système sont suffisants pour que chaque griffe exerce un effort de 3 000 N sur la jante.

Données et hypothèses :


- Toutes les forces sont supposées appartenir au plan de la feuille .
- Le poids des pièces et les frottements sont négligés
- Afin de limiter l'étude les candidats partiront de la connaissance de D' 12/13 (($\| D'$ 12/13 $\| = 1 000 N$) (Valeur obtenue en supposant un effort de la griffe sur la jante de 3 000 N)).

6.1

Équilibre du piston 8

Isolement de 8:

La pression pneumatique p équilibrant l'action B 13/8 sera représentée dans un premier temps par une force H pn/8.

- Déterminer les directions des actions B 13/8 et H pn/8 (Complétez le tableau).
 - Représenter les directions sur le dessin ci dessus.

ACTION	Point D'application	Direction
B 13/8		
H pn/8		

14

DT 10 / 12

6.2

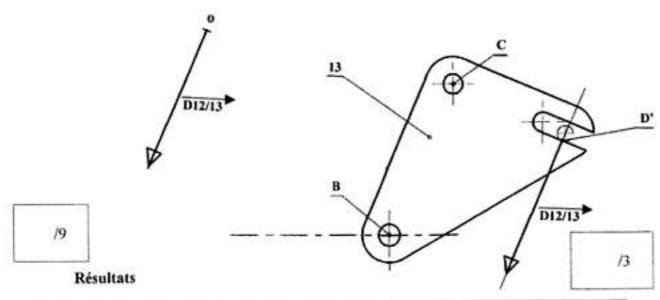
Équilibre de la bielle triangulaire 13

6.2-1 Isolement de 13

 Faites, dans le tableau ci-dessous, l'inventaire des actions extérieures qui s'exercent sur 13 (voir DT 9 / 12)

- Portez un (?) dans le tableau lorsque le paramètre est inconnu.

14


ACTION	Point d'Application (PA)	Direction ou Droite d'Action (DA)	SENS	INTENSITE
D' 12/13	D'		/	1 000 N
B 8/13				
C 11/13				

6.2-2 Déterminez graphiquement les caractéristiques des actions mécaniques extérieures qui agissent sur la bielle <u>13</u>.

« Échelles » des forces pour le dynamique 1mm = 25 N

- Reportez les résultats dans le tableau ci dessous.

15

ACTION	Point d'Application (PA)	Direction ou Droite d'Action (DA)	SENS	INTENSITE
D' 12/13	D'		/	1 000 N
B 8/13				
C 11/13				

05-06 CAR STA

6.3

Équilibre du piston 8

A l'aide des résultats précédents déterminez complètement les actions extérieures qui agissent sur le piston 3.

Portez vos résultats dans le tableau ci-dessous:

/2

ACTION	Point d'Applica- tion	Direction ou DA	Sens	Intensité
B 13/8	+.			
H pn/8		-		

6.4	
Calculez la pression hydraulique p en utilisant l'intensité de H pn/8, le ⊘ du piston (vai	eur
à rechercher dans le DR 4 / 7).	

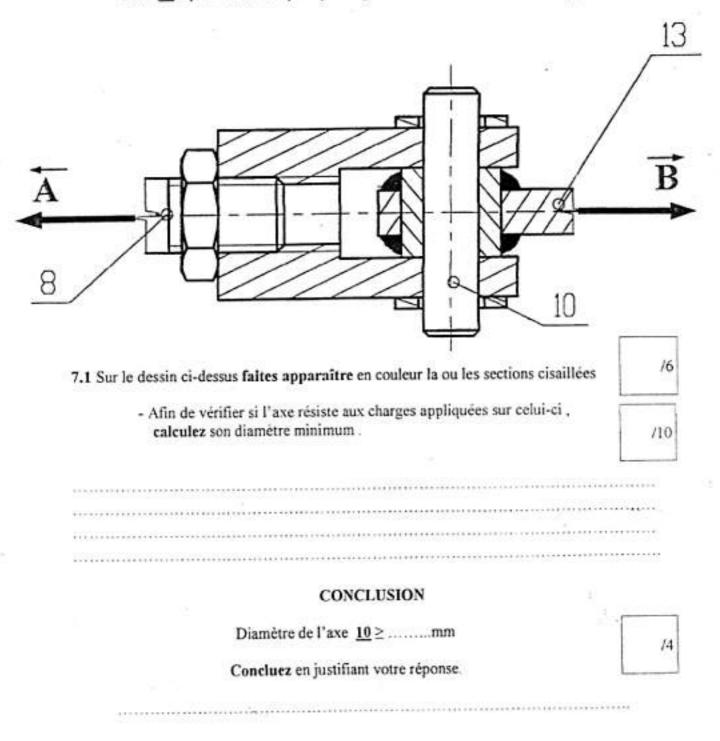
	/6
p = MPa =N/mm2	0.5
(Rappel 1 bar = $10^5 \text{ Pa} = 0.1 \text{ MPa}$)	

Vérifiez que cette pression puisse être fournie par la pression de service du système.

(voir document DR 5 / 7)

Pression de service suffisante

Pression de service insuffisante


/2

DT 12 / 12

7º. Calcul de résistance des matériaux

Données: l'articulation entre la tige du vérin 8 et la biellette 13 est définie par le dessin ci-dessous (dessin à l'échelle 1 / 1).

- L'effort A et B supporté par la liaison a pour intensité 850 N.
- L'axe 10 a pour résistance pratique au glissement la valeur suivante : Rpg =120 MPa

