EXAMEN : BACCAI	SESSION: 2005				
SPÉCIALITÉ : CARROSSE	CRIE OPTIONS : CONST	RUCTION ET RÉPARATION			
ÉPREUVE 1 : ÉPREUVE SCIENTIFIQUE ET TECHNIQUE					
SOUS - ÉPREUVE B1 : MATHÉMATIQUES ET SCIENCES PHYSIQUES					
UNITÉ : U 12	Coefficient : 2				

Ce sujet comporte 6 pages numérotées de 1 à 6.

Assurez-vous que cet exemplaire est complet.

S'il est incomplet, demandez un autre exemplaire au chef de salle.

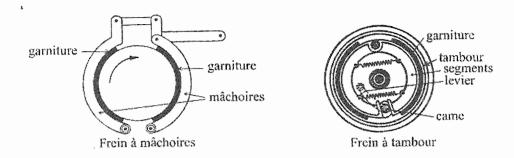
- SUJET -

<u>Matériel autorisé</u>: toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. Le prêt entre candidats est interdit.

LE SUJET COMPREND DEUX PARTIES

PARTIES	BAREME INDICATIF		
Mathématiques	15 points		
Sciences physiques	05 points		
Total	20 points		

ATTENTION


- Les documents à compléter et à rendre ne sont fournis qu'en un seul exemplaire.
- Aucun exemplaire supplémentaire ne sera remis aux candidats pendant le déroulement des épreuves.

AVERTISSEMENT

Si le texte du sujet, de ses questions ou de ses annexes vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner **explicitement** dans votre copie.

MATHÉMATIQUES (15 Points)

Le ferrodo est un matériau très utilisé dans les garnitures de freins (figures 1 et 2) pour améliorer le frottement entre un solide tournant et un solide fixe.

On souhaite étudier les variations du coefficient de frottement f entre le solide tournant et le solide fixe, en fonction de la température θ , en degré, pour deux types de ferrodo A et B.

EXERCICE 1 (3 points): Etude du comportement du ferrodo A

Une série de mesures concernant le ferrodo A est donnée dans le tableau ci-dessous :

θ (en°C)	25	50	75	100	125	150	175	200
c) m	0,32	0,30	0,25	0,23	0,21	0,18	0,15	0,12

- 1) Achever la construction du nuage de points dans le repère de l'annexe.
- 2) On admet que la droite d'équation $y = -1.28 \times 10^{-3} x + 0.364$ réalise un bon ajustement affine. Tracer cette droite dans le repère de l'annexe.
- 3) a) Calculer les coordonnées du point moyen relatif à la série de mesures.
 - b) Vérifier par le calcul que ce point est sur la droite.

EXERCICE 2 (5 points): Recherche de l'équation de la courbe relative au ferrodo B

La courbe représentant les variations du coefficient de frottement en fonction de la température pour le ferrodo B est assimilée à une parabole. Son équation s'écrit : $\mathbf{f} = a \theta^2 + b \theta + c$.

- 1) Pour $\theta = 0$, le coefficient de frottement f est 0,20. En déduire la valeur de c.
- 2) Écrire les égalités traduisant que les points M (100 ; 0,25) et N (200 ; 0,20) sont des points de la parabole.

3) Résoudre le système :
$$\begin{cases} 10\,000\,a + 100\,b = 0,05\\ 40\,000\,a + 200\,b = 0 \end{cases}$$

4) En remplaçant a, b et c par leurs valeurs, on obtient l'équation de la parabole. Écrire cette équation.

EXERCICE 3 (5 points): Etude de la courbe relative au ferrodo B

$$f(x) = -5 \times 10^{-6} x^2 + 10^{-3} x + 0.20$$

sur l'intervalle [0; 200].

- 1) Déterminer f la fonction dérivée de la fonction f.
- 2) Résoudre l'équation f'(x) = 0
- 3) Étudier le signe de cette dérivée puis compléter le tableau de variation de la fonction f donné en annexe.
- 4) Déterminer par le calcul pour quelle valeur de x la fonction f admet un maximum. En déduire la température θ , en degré, pour laquelle le ferrodo B est le plus efficace.
- 5) Compléter le tableau des valeurs de l'annexe (les résultats seront arrondis à 10⁻³).
- 6) Tracer dans le repère de l'annexe, la courbe représentative de la fonction f.

EXERCICE 4 (2 points): Comparaison des ferrodo A et B

- 1) À partir d'une lecture graphique, déterminer la température pour laquelle les deux ferrodo ont le même coefficient de frottement. On laissera apparents les traits nécessaires à la lecture.
- 2) Lorsque les freins sont très sollicités, la température des garnitures de frein augmente très rapidement. Déterminer le type de ferrodo qu'il vaut mieux utiliser lorsque la température dépasse 100 °C. On laissera apparents les traits nécessaires à la lecture.

SCIENCES PHYSIQUES (5 points)

EXERCICE 5 (2,5 points):

Afin de changer les plaquettes de frein, on utilise le vérin de la figure 4:

figure 4

1	Levier	Α	Liaison rotule
2	Piston de commande		Liaison rotule
3	Tige	C	Liaison pivot
4	Cylindre	D	Cylindre
5	Piston de puissance	E	Cylindre
6	Vis d'approche		

On donne:

piston de commande : diamètre : 14 cm
piston de puissance : diamètre : 32 cm

 $- p = \frac{F}{S}$

- 1) La personne qui utilise le vérin, transmet une force d'intensité 750 N sur le piston de commande. Calculer, en m², l'aire de la section S₁ du piston de commande (le résultat sera arrondi à 10⁻⁴). Calculer, en pascal, la pression exercée par le piston de commande (le résultat sera arrondi à l'unité).
- 2) Quelle est la valeur de la pression transmise au piston de puissance ?
- 3) Calculer, en m², l'aire de la section S₂ du piston de puissance (le résultat sera arrondi à 10⁻⁴). Calculer, en newton, l'intensité de la force exercée par le piston de puissance sur le véhicule (le résultat sera arrondi à l'unité).

EXERCICE 6 (2,5 points):

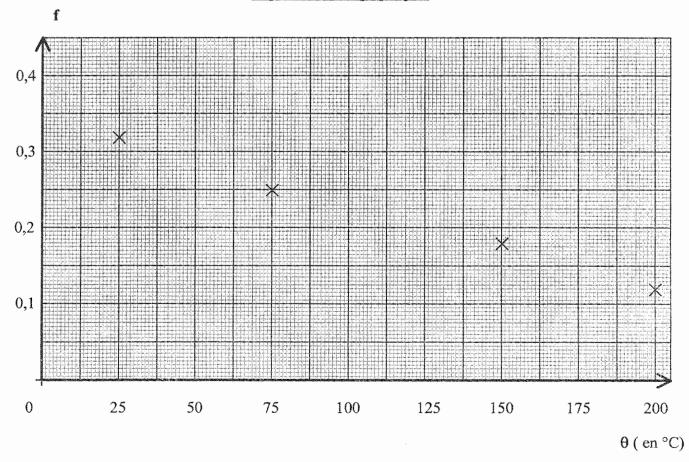
Certains articles sont réalisés en polyéthylène par polymérisation de l'éthylène. L'équation bilan de la synthèse de ce produit s'écrit :

 $n (CH_2 = CH_2)$ $CH_2 - CH_2$

- 1) Cette polymérisation est-elle une réaction de polyaddition ou de polycondensation ? Justifiez la réponse.
- 2) Calculer la masse molaire moléculaire de l'éthylène.
- 3) Sachant que le polyéthylène a une masse molaire moyenne de 210 000 g/mol, calculer son degré de polymérisation n.

Données: masses molaires atomiques: C = 12 g/mol; H = 1 g/mol.

Annexe (à rendre avec la copie)


Tableau de variation à compléter

x	0 200
Signe $de f'(x)$	
£(x)	
f(x)	

Tableau des valeurs à compléter

x	0	25	50	75	100	125	150	175	200
f(x)	0,2		0,238			0,247		0,222	

Représentations graphiques

FORMULAIRE BACCALAUREAT PROFESSIONNEL Artisanat, Bâtiment, Maintenance - Productique

Fonction f	Dérivée f'
f(x)	f'(x)
ax + b	а
x^2	2x
$x^{\frac{1}{3}}$	$3x^2$
1	
$\frac{-}{x}$	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : ln
$$\ln (ab) = \ln a + \ln b$$

$$\ln\left(ab\right) = \ln a + \ln b$$

$$\ln\left(a^{n}\right) = n \ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$ $\Lambda = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1:u_1$ et raison q

Terme de rang $n: u_n = u_l.q^{n-l}$

Somme des k premiers termes:

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

cos(a+b) = cosa cosb - sina sinb

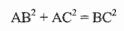
 $\cos 2a = 2\cos^2 a - 1$

 $= 1 - 2 \sin^2 a$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_{i}$$


$$\sum_{i=1}^{p} n_i x_i$$
Moyenne $\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$

Moyenne
$$\bar{x} = \frac{1}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type
$$\sigma = \sqrt{V}$$

Relations métriques dans le triangle rectangle

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Résolution de triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc\sin \hat{A}$

Trapèze: $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume Bh

Sphère de rayon R:

Aire: $4\pi R^2$

Volume: $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B et de

hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$||\vec{v}|| = xx' + yy'$$

$$||\vec{v}|| = \sqrt{x^2 + y^2}$$

$$||\vec{v}|| = xx' + yy' + zz'$$

$$||\vec{v}|| = \sqrt{x^2 + y^2 + z^2}$$

Si $\vec{v} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$

$$\vec{v}.\vec{v} = ||\vec{v}|| \times ||\vec{v}|| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v} = 0$ si et seulement si $\vec{v} \perp \vec{v}$