E 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve B1

Mathématiques et Sciences physiques

L'usage des calculatrices est autorisé dans les conditions dictées par la circulaire 99-186 du 16/11/99.

Les formulaires de mathématiques et sciences physiques sont joints au sujet.

Durée: 2 heures

Coefficient: 2

MATHÉMATIQUES – 15 POINTS

Une enquête a été réalisée auprès d'élevages industriels pour suivre la progression d'une maladie contagieuse.

Exercice 1 (12 points)

Le tableau ci-dessous donne le nombre N(x) d'élevages ayant été contaminés à la date x, exprimée en jours.

X	2	4	6	8	10	12	14	16
N(x)	170	270	340	380	410	450	460	480

Après 20 jours, le nombre d'élevages contaminés n'augmente plus. On considère que la contagion est terminée.

- 1.1. Dans le repère de la feuille annexe 1, page 4/7, compléter le nuage des points de coordonnées (x; N(x)) en plaçant les quatre derniers points.
- 1.2. Les services vétérinaires cherchent à prévoir le nombre d'élevages contaminés le 20^e jour.

1ère méthode : ajustement affine.

- 1.2.1. Le point moyen G₁ correspondant aux 4 premiers points du nuage a pour coordonnées (5; 290). Placer le point G_1 sur la feuille annexe 1 page 4/7.
- 1.2.2. Déterminer les coordonnée du point moyen G₂ des 4 derniers points du nuage et placer le point G₂ sur la feuille annexe 1.
- 1.2.3. Tracer la droite (G_1G_2) .
- 1.2.4. Montrer qu'une équation de la droite (G_1G_2) est y = 20x + 190.

2ème méthode : ajustement à l'aide d'une fonction du second degré.

On considère la fonction f définie sur l'intervalle [0; 20] par :

$$f(x) = -1.3 x^2 + 47x + 82.$$

- 1.2.5. Calculer f'(x) où f' est la dérivée de la fonction f.
- 1.2.6. Résoudre l'équation f'(x) = 0. Arrondir la solution x_0 au dixième.
- 1.2.7. Compléter le tableau de variation de l'annexe 2 page 5/7. La valeur de $f(x_0)$ n'est pas demandée.
- 1.2.8. Compléter le tableau de valeurs de l'annexe 2 page 5/7.
- 1.2.9. Tracer (en couleur) la courbe C représentative de la fonction f dans le repère de la feuille annexe 1 page 4/7.

1.3. Exploitation:

- 1.3.1. Selon l'ajustement affine, calculer le nombre d'élevages contaminés le 18^e jour en utilisant l'équation de la droite (G_1G_2) .
- 1.3.2. Selon l'ajustement du second degré (courbe *C*), déterminer graphiquement le nombre d'élevages contaminés le 18^e jour (laisser apparents les tracés utiles à la lecture).
- 1.3.3. Le service vétérinaire a pu constater qu'au 18^e jour, 490 élevages ont été contaminés. En déduire la méthode la plus appropriée pour prévoir la situation sanitaire du 18^e jour.
- 1.3.4. Utiliser cette méthode pour prévoir le nombre d'élevages contaminés le 20^e jour.

Exercice 2 (3 points)

On étudie l'évolution du nombre de bactéries, présentes dans un bouillon de culture, en fonction du temps, exprimé en heure.

Le tableau ci-dessous donne le début de cette évolution :

Temps (en heure)	1	2	3	4
Nombre de bactéries (en million)	6	12	24	48

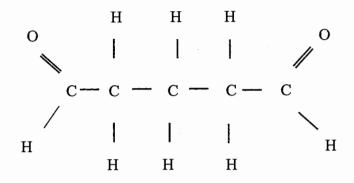
On note

 U_1 le nombre de bactéries après 1 heure,

 U_2 le nombre de bactéries après 2 heures,

U₃ le nombre de bactéries après 3 heures,

 U_n le nombre de bactéries après n heures.


- 2.1. Calculer chacun des rapports : $\frac{U_2}{U_1}$; $\frac{U_3}{U_2}$ et $\frac{U_4}{U_3}$.
- 2.2. On suppose que la suite (U_n) est une suite géométrique de premier terme U_1 et de raison q. Donner la valeur de q.
- 2.3. En utilisant le formulaire, donner, en fonction de n, l'expression du terme U_n .
- 2.4. Calculer, en million, le nombre de bactéries présentes au bout de 18 heures en supposant que le bouillon de culture permet de conserver pendant 18 heures la même évolution du nombre de bactéries.

SCIENCES PHYSIQUES - 5 POINTS

Exercice 3 (3 points):

Un moyen de lutter contre le développement des bactéries dans les élevages est d'utiliser régulièrement un désinfectant.

Un exemple de désinfectant utilisé est le 1,5 - pentanedial appelé aussi aldéhyde glutarique de formule chimique développée.

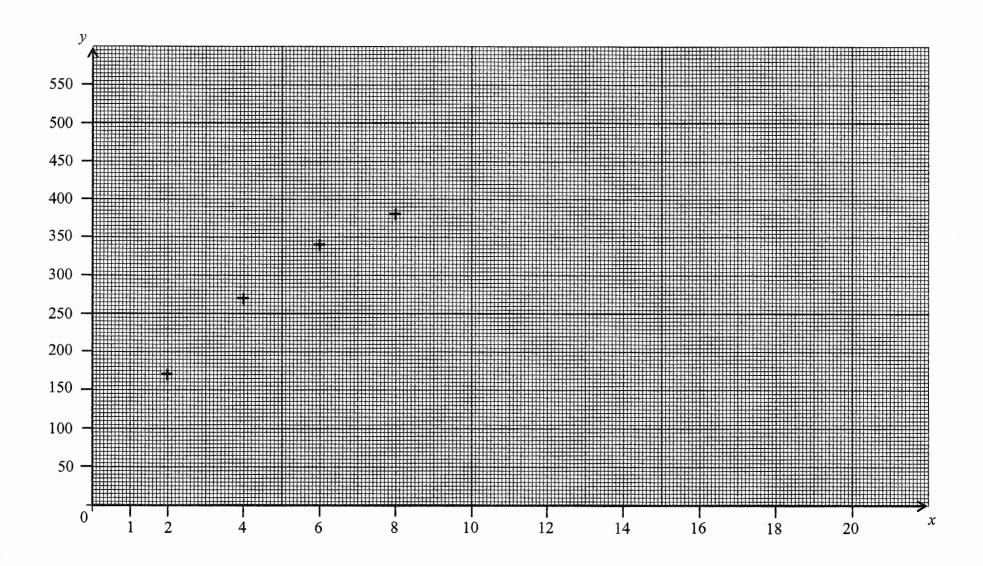
- 3.1. Entourer sur la feuille annexe 2, page 5/7, les 2 groupements aldéhydes.
- 3.2. Donner la formule brute de l'aldéhyde glutarique.
- 3.3. Calculer sa masse molaire moléculaire.

$$M(C) = 12 \text{ g/mol}$$

$$M(H) = 1 \text{ g/mo}$$

$$M(H) = 1 \text{ g/mol}$$
 $M(O) = 16 \text{ g/mol}$

Exercice 4 (2 points)


Une plaque signalétique d'un stérilisateur servant dans les élevages est donnée ci-dessous :

4.1. Donner la signification des indications suivantes (préciser en toutes lettres le nom et l'unité de la grandeur):

4.2. La puissance utile donnée par le constructeur est de 1 450 W. Calculer le rendement η de ce stérilisateur (arrondir à 10^{-3}).

ANNEXE 1

A rendre avec la copie

ANNEXE 2

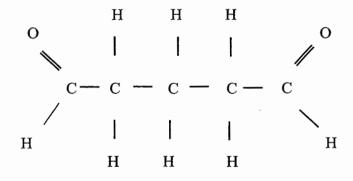

A rendre avec la copie

Tableau de variation:

x	0	20
Signe $\operatorname{de} f'(x)$		
Sens de variation de f		

Tableau de valeurs :

x	0	. 4	8	10	16	20
 f(x)		249	375		501	

FORMULAIRE DE MATHÉMATIQUES BACCALAURÉAT PROFESSIONNEL SECTEUR INDUSTRIEL : Chimie – Énergétique

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	a
x_3^2	2x
x^3	$3x^2$
1_	_1
x	$-\frac{1}{x^2}$
$\ln x$	1/x
e ^x	e ^x
e^{ax+b}	$a e^{ax+b}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)
u(x) v(x)	$u'(x) \ v(x) + u(x) \ v'(x)$
1	u'(x)
$\overline{u(x)}$	$-\frac{1}{[u(x)]^2}$
u(x)	u'(x)v(x)-u(x)v'(x)
v(x)	$[v(x)]^2$

Équation du second degré

$$a x^{2} + b x + c = 0 \Delta = b^{2} - 4 a c$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = \frac{-b}{2a}$$

- Si Δ < 0, aucune solution réelle.

- Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Statistiques

Effectif total :
$$N = \sum_{i=1}^{p} n_i$$

Moyenne:
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance:
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$$

Suites arithmétiques

Terme de rang $1:u_1$ et raison : r

Terme de rang $n: u_n = u_1 + (n-1) r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1:u_1$ et raison : q

Terme de rang $n: u_n = u_1 q^{n-1}$

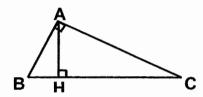
Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = u_1 \frac{1 - q^k}{1 - q}$$
; $(q \neq 1)$

Logarithme népérien : ln

$$\ln\left(a\;b\right) = \ln a + \ln b$$

$$\ln\left(a^{n}\right)=n\ln a$$


$$\ln (a/b) = \ln a - \ln b$$

$$y' - a y = 0$$

$$y = k e^{ax}$$

Relations métriques dans le triangle rectangle $AB^2 + AC^2 = BC^2$

$$AB^2 + AC^2 = BC^2$$

$$\sin \hat{B} = \frac{AC}{RC}$$
; $\cos \hat{B} = \frac{AB}{RC}$; $\tan \hat{B} = \frac{AC}{AR}$

Aires dans le plan

Triangle:
$$\frac{1}{2} b c \sin \hat{A}$$
 Trapèze: $\frac{1}{2} (B+b) h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit d'aire de base B et

de hauteur h: Volume : Bh

Sphère de rayon R:

Aire:
$$4 \pi R^2$$

Volume:
$$\frac{4}{3} \pi R^3$$

Cône de révolution ou Pyramide d'aire de base B et de

hauteur h: Volume : $\frac{1}{2} B h$

Calcul intégral

* Relation de Chasles:

$$\int_a^c f(t)dt = \int_a^b f(t)dt + \int_b^c f(t)dt$$

*
$$\int_a^b (f+g)(t)dt = \int_a^b f(t)dt + \int_a^b g(t)dt$$

$$* \int_a^b kf(t)dt = k \int_a^b f(t)dt$$

Formulaire de sciences physiques (Bac Pro Hygiène et Environnement)

Électricité:

• Loi du transformateur parfait

$$k = \frac{N_2}{N_1} = \frac{U_2}{U_1} = \frac{I_1}{I_2}$$

ou k est le rapport de transformation

Statique des fluides :

- Masse volumique $\rho = \frac{m}{V}$
- Principe fondamental de l'hydrostatique

$$P_{\rm A} - P_{\rm B} = \rho g h \qquad 1 \text{ bar} = 10^5 P_{\rm a}$$

1 bar =
$$10^5 P_a$$

Énergie hydraulique:

- Débit volumique $Q_v = \frac{V}{t} = v S$
- Débit massique $Q_m = \frac{m}{t}$
- Équation de conservation des débits $v_1 S_1 = v_2 S_2$
- Puissance hydraulique $P = p Q_v$
- Cylindrée $C = \frac{Q_v}{n}$
- Rendement $\eta = \frac{P_u}{P_a} = \frac{E_u}{E_a}$

Optique:

· Longueur d'onde d'un rayonnement

$$\lambda = \frac{c}{f}$$

• Vitesse de la lumière dans le vide

$$c = 3.10^8 \text{ m/s}$$

Chimie:

- Concentration massique $c = \frac{m}{V}$
- Concentration molaire $C = \frac{n}{V}$

- $[H_3O^+] = 10^{-pH}$
- Produit ionique de l'eau à 25° C

$$[H_3O^+] \times [OH^-] = 10^{-14}$$

• À l'équivalence

$$n_{(H_3O^+)} = n_{(OH^-)}$$

- Oxydant + ne^{-} $\stackrel{\text{réduction}}{\underset{\text{oxydation}}{\longleftarrow}}$ réducteur
- Formule générale des alcènes

$$C_n H_{2n}$$

• Fonctions en chimie organique

-c- acide carboxylique

- -c \(\) - aldéhyde
- -c c c c -- cétone
- C N -- amine
- amide
- Indice de polymérisation

$$n(R = R') \longrightarrow (R-R')_n$$