!	Académie :	Session:	Modèle E.N.
1	Examen:		Série :
	Spécialité/option :	Repère	de l'épreuve :
[[]	Epreuve/sous épreuve :		
CADRE	NOM		
CAI	(en majuscule, suivi s'il y a lieu, du nom d'épouse)		
	Prénoms:	n° du cano	lidat
AS (Né(e) le :		
DANS CE		(le numéro est celu	i qui figure sur la convocation ou liste d'appel)
NE RIEN ECRIRE		NOTATION / 20	
		des C.A.P. : SECT	

MATHÉMATIQUES ET SCIENCES (2 heures)

CAP:

Accessoiriste réalisateur
Accordeur de piano
Agent d'exécution graphiste décorateur
Assistant technique en instruments de musique
Dessinateur d'exécution en communication graphique
Électricien systèmes d'aéronefs
Électrobobinage
Électrotechnique
Équipement connectique contrôle
Équipements électriques et électroniques de l'automobile
Facteur d'orgues
Installation en équipements électriques

Installation en télécommunications et courants faibles Mécanicien d'entretien d'avions – Option T3:
Systèmes électromécaniques et électroniques d'avions Métiers de l'enseigne et de la signalétique
Monteur en optique lunetterie
Monteur raccordeur de réseaux de télécom. et vidéocom.
Opérateur projectionniste de l'audio-visuel
Ouvrier opticien de précision
Photographe
Sérigraphie industrielle
Tuyautier en orgues

- La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.
- La calculatrice est autorisée. Le matériel autorisé comprend toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante.

Les réponses sont à rédiger UNIQUEMENT sur le sujet.

A l'issue de l'épreuve, vous remettrez l'ensemble du document. AUCUNE COPIE SUPPLEMENTAIRE N'EST NECESSAIRE.

CAP SECTEUR 3	CHITETE	D / 01	Session 2005
ÉPREUVE : MATHÉMATIQUES - SCIENCES	SUJET	Durée : 2 heures	Page: 1/9

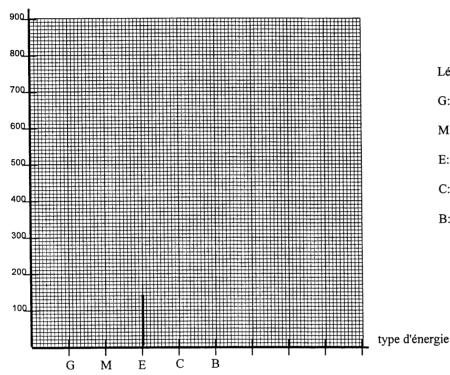
MATHÉMATIQUES

EXERCICE 1: 3 POINTS

Monsieur Martin souhaite changer le mode de chauffage de sa chambre ; il s'intéresse à une enquête réalisée sur l'énergie utilisée pour le chauffage.

Energie ou combustible utilisé	Effectif n _i	Fréquence $f_i(\%)$
Gaz naturel	890	44,5
Mazout, gasoil	860	43,0
Electricité	140	•••••
Charbon/Bois	80	4,0
Gaz butane ou propane	30	1,5
Total	N =	

1)	Préciser la nature du caractère étudi Cocher la réponse exacte.	é dans cette enquête.
	Quantitatif	Qualitatif
2)	Calculer l'effectif total N.	


a) Calculer la fréquence, exprimée en pourcentage correspondant à l'utilisation de l'électricité.

b) Compléter le tableau ci-dessus.

CAP SECTEUR 3	SUJET	Dunés : 2 hannes	Session 2005
ÉPREUVE : MATHÉMATIQUES - SCIENCES	SUJEI	Durée : 2 heures	Page: 2/9

4) Dans le repère ci-dessous, tracer le diagramme en bâtons de cette enquête.

effectif

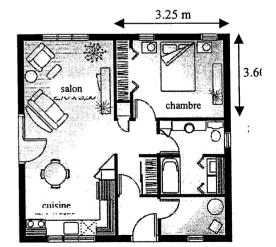
Légende:

G: gaz naturel

M: mazout/gasoil

E: électricité

C: charbon / bois


B: butane/propane

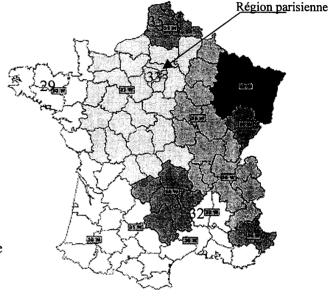
EXERCICE 2: 2 POINTS

Pour choisir correctement la puissance de chauffage nécessaire, monsieur Martin doit réaliser un devis thermique.

Il calcule le volume V, en m³, de la chambre dont les dimensions sont indiquées sur le plan ci-contre :

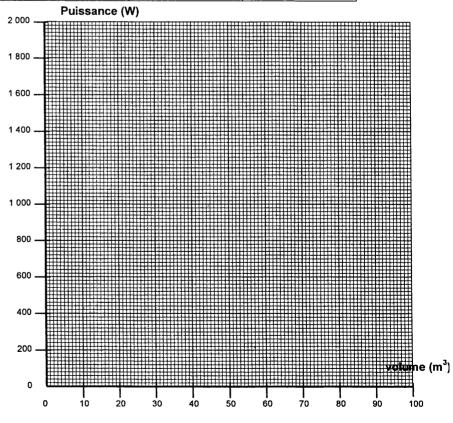
1) Calculer, en m², l'aire S de la surface de la chambre, sachant que celle-ci est rectangulaire.

2) Calculer le volume V, en m³, de la chambre, sachant que sa hauteur (sol/plafond) est de 3 m.


La chambre est assimilée à un parallélépipède rectangle ; arrondir le résultat à l'unité.

CAP SECTEUR 3	SUJET	Durée : 2 heures	Session 2005
ÉPREUVE: MATHÉMATIQUES-SCIENCES	SUJEI	Durec . 2 neures	Page: 3/9

EXERCICE 3:5 POINTS


Pour compléter son devis thermique, monsieur Martin doit multiplier le volume obtenu par le coefficient correspondant à sa région d'habitation. Ce coefficient est indiqué sur la carte de la France climatique ci-contre.

- 1) Sachant que monsieur Martin habite la région parisienne, relever sur la carte ci-dessus le coefficient dont il doit tenir compte :
- 2) En région parisienne, on considère que la puissance consommée est proportionnelle au volume chauffé. Compléter le tableau suivant :

Volume V(m ³)	20	30	40	60
Puissance P(W)	660	990		1 980

3) Représenter graphiquement la situation correspondant aux valeurs indiquées dans le tableau ci-dessus.

CAP SECTEUR 3	SUJET	Durás i 2 houres	Session 2005
ÉPREUVE : MATHÉMATIQUES-SCIENCES	SUJEI	Durée : 2 heures	Page : 4 / 9

- 4) On suppose que le volume de la chambre de monsieur Martin est V= 35 m³. Déterminer, en utilisant le graphique page 4, la puissance de chauffage nécessaire. (laisser apparents les traits de lecture graphique).
- 5) Exprimer pour la région parisienne, la puissance P consommée (en watt) en fonction du volume V chauffé (en m³).

SCIENCES PHYSIQUES

EXERCICE 4:3 POINTS

La masse du radiateur choisi est m = 8 kg

- 1) Calculer la valeur du poids \vec{P} du radiateur sachant que P = mg (on prendra g = 10 N/kg)
- 2) Préciser la nature de l'action correspondant au poids. Cocher la réponse exacte.

une action de contact

une action à distance

3) Compléter le tableau suivant :

Grandeur physique	Nom de l'unité de mesure	Symbole de l'unité
Poids		
		kg

4) Compléter le tableau des caractéristiques du poids \vec{P} du radiateur.

Force	Point d'application	Droite d'action	Sens	Valeur (N)
$ec{P}$	G			

CAP SECTEUR 3	SUJET	Durée : 2 heures	Session 2005
ÉPREUVE : MATHÉMATIQUES-SCIENCES	SUJEI	Durée : 2 heures	Page: 5/9

5) Représenter graphiquement, ci-dessous, la force représentant le poids \vec{P} . (échelle : 1cm pour 20 N)

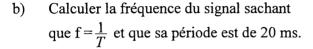
EXERCICE 5: 5 POINTS

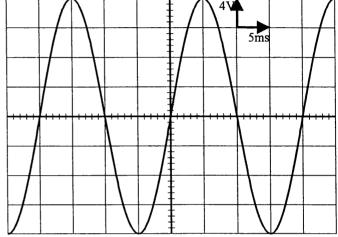
La plaque signalétique du radiateur porte les indications suivantes :

1 250W 230 V ~ 50Hz

1) Compléter le tableau suivant en indiquant les grandeurs physiques signalées sur la plaque.

Grandeur physique	Nom de l'unité de mesure	Symbole de l'unité	
Puissance	watt	W	
Tension			
		Hz	


2)	Quelle est la nature de la tension utilisée ?
	Cocher la réponse exacte ; justifier la réponse.


☐ continue

□ alternative

CAP SECTEUR 3	SUJET	Durée : 2 heures	Session 2005
ÉPREUVE : MATHÉMATIQUES-SCIENCES	SUJEI		Page : 6 / 9

- 3) On visualise la tension sur l'écran d'un oscilloscope à l'aide d'une sonde. On obtient le graphique ci-contre :
 - a) Déterminer graphiquement la période *T* du signal (en ms et s).

- c) Déterminer graphiquement sa tension maximale U_{max} .
- d) Calculer la tension efficace U (le résultat sera arrondi au dixième) On donne $U = \frac{U_{\text{max}}}{\sqrt{2}}$
- e) Comparer avec la tension d'alimentation U_a sachant que : $U_a = U \times 20$.

EXERCICE 6: 2 POINTS

Il existe des systèmes de chauffage qui fonctionnent au gaz propane, un composé organique de formule chimique C_3H_8 .

1) Sur une bouteille de propane on a relevé le pictogramme ci-après : Relier par une flèche le pictogramme à sa signification.

1	CAP SECTEUR 3	CILIDAD	Dunés . 2 hours	Session 2005
	ÉPREUVE : MATHÉMATIQUES-SCIENCES	SUJET	Durée : 2 heures	Page: 7 / 9

=	

Ц	Corrosif
_	

Toxique

☐ Inflammable

2) Indiquer le nom des éléments et le nombre d'atomes de chaque élément dans une molécule de propane, en utilisant l'extrait de la classification périodique ci-joint.

Nom	
Symbole chimique	
Nombre	

EXTRAITEDETA	CLASSIFICATION PERIODIC	OTHE DEC ET EMENITO
EXIKALI DE LA	CLASSIFICATION FERIODIO	AGE DES EFEMENTS

I	II	III	IV	V	VI	VII	VIII
l H I Hydrogène							4 He 2 Hélium
7 Li 3 Lithium	9 Be 4 Béryllium	11 B 5 Bore	C 6 Carbone	N 7 Azote	16 O 8 Oxygène	19 F 9 Fluor	20 Ne 10 Néon
23 Na 11 Sodium	24 Mg 12 Magnésium	27 Al 13 Aluminium	28 Si 14 Silicium	P 15 Phosphore	32 S 16 Soufre	35 Cl 17 Chlore	40 Ar 18 Argon

A : nombre de masse

X

Z : numéro atomique

CAP SECTEUR 3	CILITET	Durée : 2 heures	Session 2005
ÉPREUVE : MATHÉMATIQUES-SCIENCES	SUJET		Page: 8 / 9
<u> </u>			

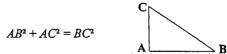
Formulaire de mathématiques

Puissances d'un nombre

$$10^{0} = 1$$
; $10^{1} = 10$; $10^{2} = 100$; $10^{3} = 1000$
 $10^{-1} = 0.1$; $10^{-2} = 0.01$; $10^{-3} = 0.001$
 $a^{2} = a \times a$; $a^{3} = a \times a \times a$

Nombres en écriture fractionnaire

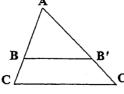
$$c\frac{a}{b} = \frac{ca}{b} \quad \text{avec } b \neq 0$$


$$\frac{ca}{cb} = \frac{a}{b} \quad \text{avec } b \neq 0 \text{ et } c \neq 0$$

Proportionnalité

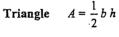
a et b sont proportionnels à c et d(avec $c \neq 0$ et $d \neq 0$)

équivaut à $\frac{a}{c} = \frac{b}{d}$ équivaut à a d = b c


Relations dans le triangle rectangle

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Propriété de Thalès relative au triangle


si
$$(BB')$$
 // (CC')
alors
$$\frac{AB}{AC} = \frac{AB'}{AC'} = \frac{BB'}{CC'}$$

<u>Périmètres</u>

Cercle de rayon R: $p = 2 \pi R$ Rectangle de longueur L et largeur l: p = 2 (L + l)

Aires

Rectangle A = L l

Parallélogramme
$$A = b h$$

Trapèze
$$A = \frac{1}{2}(b+b')h$$

Disque de rayon R $A = \pi R^2$

Volumes

Cube de côté a: $V = a^3$ Pavé droit (ou parallélépipède rectangle) de dimensions l, p, h: V = l p h

Cylindre de révolution où A est l'aire de la base et h la hauteur : V = A h

Statistiques

Moyenne: \bar{x}

$$\bar{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n_1 + n_2 + \dots + n_p}$$

Fréquence : f

$$f_1 = \frac{n_1}{N}$$
 ; $f_2 = \frac{n_2}{N}$; ... ; $f_p = \frac{n_p}{N}$

Effectif total: N

Calculs d'intérêts simples

Intérêt : I
Capital : C
Taux périodique : t
Nombre de périodes : n
Valous acquise en fin de placem

Valeur acquise en fin de placement : A

$$I = C t n$$
$$A = C + I$$