CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

	Académie :		Sessi							
	Examen:	Série :								
	Spécialité / option : Repère de l'épreuve :									
ORE	NOM:	Epreuve / sous épreuve : NOM :								
CAI	(en majuscules, suivi s'il y a lieu, du nom d'épouse)			T						
CE	Prénoms :	N°	de candidat :							
DANS CE CADRE	Né(e) le :									
D/Q	1.0(0) 10 1									
NE RIEN ECRIRE										
	Comm	PREUVE EP1 nunication techniqueuxième partie:	ue							
		CHNOLOGIE Option B	\bigvee							
	BARE	ME DE NOTATI	ØN.							
	Thème moteur	Page: 2 à 7	/ 13	/ 48						
	Thème transmission	Page : 8 et 9	/ 13	/ 34						
	Thème train avant	Page: 10	/ 13	/ 18						
	Thème freinage	Page: 11	/ 13	/ 16						
	Thème électricité	Page: 12 et 13	/ 13	/ 24						
			TOTAL:	/ 140						
			NOTE:	/ 20						

Examen: B.E.P MAINTENANCE DES VEHICULES OPTION B	04-2158	Coëf: 1,5	SUJET
Examen: C.A.P MAINTENANCE DES VEHICULES OPTION B	04-2158	Coëf: 3	SESSION 2005
Epreuve: EP1 2ème PARTIE TECHNOLOGIE	Durée : 2 h30		Page 1/13

Question 1: moteur

Distribution

1.1: Citez la définition de chacune des abréviations et rechercher, dans les documents 1 et 3 des folios 2/13 et 3/13, les valeurs angulaires correspondantes au moteur: 06.23.56 A41.

AOA: Avance Ouverture Admission

 M_{ϕ} 3

RFA: Retard Fermeture Admission

130

AOE: Avance Ouverture Echappement

380

RFE: Retard Fermeture Echappement

40

AI : Avance Injection

7°30' ?

DISTRIBUTION (document 1)

La distribution des moteurs MIDR 06 20 45 et 06.23.56 est assurée par des pignons à taille hélicoïdale entraînés par le vilebrequin et placés sur la face avant du carter-cylindres.

DIAGRAMME DE DISTRIBUTION

Valeurs du diagramme de distribution

		mm/piston		
	Degrés/vilebrequin	mot. 06 20 45	mot. 06 23 56	
A.O.A	11 ³ 13 ³ 58° 14°	1,75 143,73 119,37 2,83	1,92 154,68 129,14 3,10	

Jeu de réglage théorique aux culbuteurs (à froid)

- ADM : 0,67

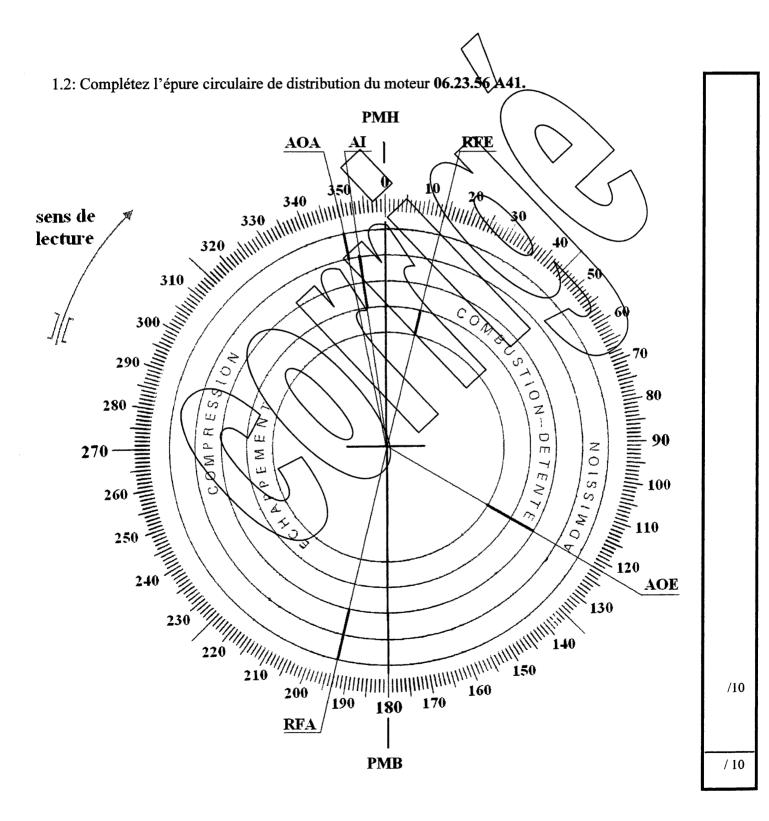
- ÉCH : 0,62

/10

/ 10

Epreuve: EP1 26me PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 2/13

CARACTERISTIQUES GENERALES (document 2)


Marque			RENAULT		
Modèle		\wedge	KERAX		
Type de moteur	MIDR 06 20 45 C4	MIDR 06 20 45 D41	MIDR 06 20 45E41	MIDR 06 23 56 A41	MIDR 06 23 56 B41
Version	120 145 10 17/1 255/2 100 100/1 400 2 500/2 600 520/630 0,9 785	120 145 17/12 298/4 100 122/1 200 2 500/2 600 \$20/630 18,7 785	Suralinentée avec air retroidi Direct 1 temps Par liquide 6 en lique Sens toraire 1.5.3.6.8.4 120 145 10 17/1 338/2 000 160/1 200 2 350/8 430 570/638 15,2	28 156 1,16 174 881/2 000 1 5/1 200 2 350/2 430 610/670 19,71 785	123 156 11,16 17/1 392/2 000 180/1 100 à 1 300 2 350/2 430 610/670 20,27 785

INVECTION (document 3)

Identification, pompe d'injection, régulateur, porte-injecteur, turbocompresseur et valeurs de calage

Moteurs Types de pompe d'injection	06 20 45 C4 PES 6P 120 A 320 RS 7359	06 20 45 D41 PES 6P 120 A 320 RS 7364	06 20 45 E41 PES 6P 120 A 320 RS 7344	06.23.56 A41 PES 6P 120 A 320 RS 7343	06.23.56 B41 PES 6P 120 A 320 RS 7343
Régulateurs	RQV300/1050 PA 1191	RQV300/1050 PA 1204	RQV275/1000 PA 1161	RQV300-1000 PA 1160 K	RQV300-1000 PA 1160 K
Avance automatique hydraulique à pilotage électronique		AER21003	AER21003	AER21003	AER21003
Calage : - volant/moteur - mm/piston moteur	11° ± 30' 1,70 ± 0,10	10°30' ± 30' 1,60 ± 0.15	8° ± 30' 0,93 ± 0,11	7°30' ± 30' 0,90 ± 0,11	8° ± 30' 1,02 ± 0,12
Porte-injecteurs	KBEL100 P126	KDEL100 P123	KBEL 100 P64	KBEL100 P 123	KBEL100P 123
Injecteurs	DLLA149 P528	DLLA149 PV3182847	DLLA148 P513	DLLA144 P510	DLLA144 P510
Tarage (bars) - neufs - réutilisés	320 à 328 300 à 320	320 à 328 300 à 320	320 à 328 300 à 320	320 à 328 300 à 320	320 à 328 300 à 320
Turbocompresseur	HOLSET HX 40	HOLSET HX 40	SCHWITZER S 300	SCHWITZER S 300	SCHWITZER S 300

Epreuve: EP1 26me PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 3/13

SESSION 200

Epreuve: EP1 2éme PARTIE TECHNOLOGIE

Codes: 04-2158 Page 4/13

1.3 A l'aide du document 2 du folio 1/13, énoncez (en complétant le tableau ci-dessous) les phases de fonctionnement du moteur 06.23.56 A41 en fonction de son ordre d'injection.

	Cylindre n°1	Cylindre n°2	Cylindre n°3	Cylindre no4	Cylindre nº5	Cylindre n°6
	ADMISSION	COMPRESSION			ECHAPPEMENT	COMB-DET
180°		COMB-DET	ECHAPPEMENT	COMPRESSION	ADMISSION	
	COMPRESSION		ADMISSION	CQMB-DET.		ECHAPPEMENT
360°	COMB-DET	ECHAPPEMENT			COMPRESSION	ADMISSION
540°	ECHAPPEMENT	ADMISSION	COMPRESSION	ECHAPPEMNT	COMB-DET	COMPRESSION
720°			COMB-DET	ADMISSION		

Entourez le temps moteur le plus résistant

admission

échappement

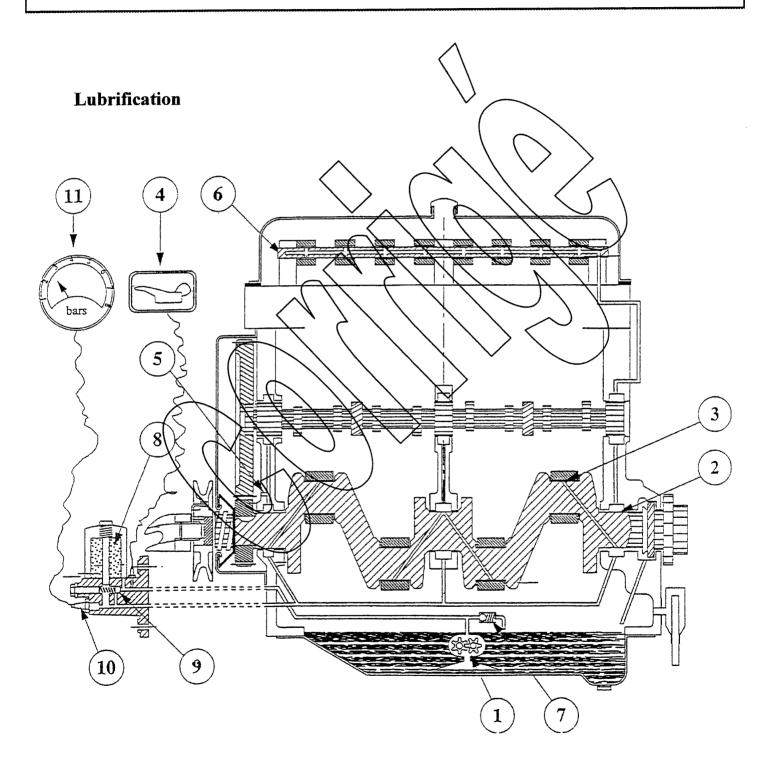
combustion détente

compression

Le jeu aux soupapes.

1.4: Citez la raison justifiant la nécessité du jeu entre culbuteur et soupape.

Le jeu entre culbuteur et soupape permet d'assurer la fermeture complète de la soupape, lorsque celle-ci se dilate.


/2

/12

/1

/15

Epreuve: EP1 2éme PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 5/13

1.5 : Identifiez sur le schéma du circuit de lubrification, folio 6/13, les éléments constitutifs en complétant les repères dans le tableau ci-dessous.

Repère	Désignation
1	Pompe à huile
10	Mano-contact de pression d'huile
8	Cartouche filtrante
9	By-pass ou clapet de sécurité
7	Clapet de décharge

1.6 : Citez la fonction globale du système de graissage des moteurs.

Le système de graissage fournit aux éléments mobiles l'huile sous pression nécessaire à éviter leur frottement et leur usure.

Le système de graissage participe également au refroidissement du moteur

1.7 : Définir la fonction des éléments suivants:

- Cartouche filtrante.

La cartouche filtrante permet de retenir les impuretés et l'eau contenues dans le carburant

- By-pass ou clapet de sécurité:

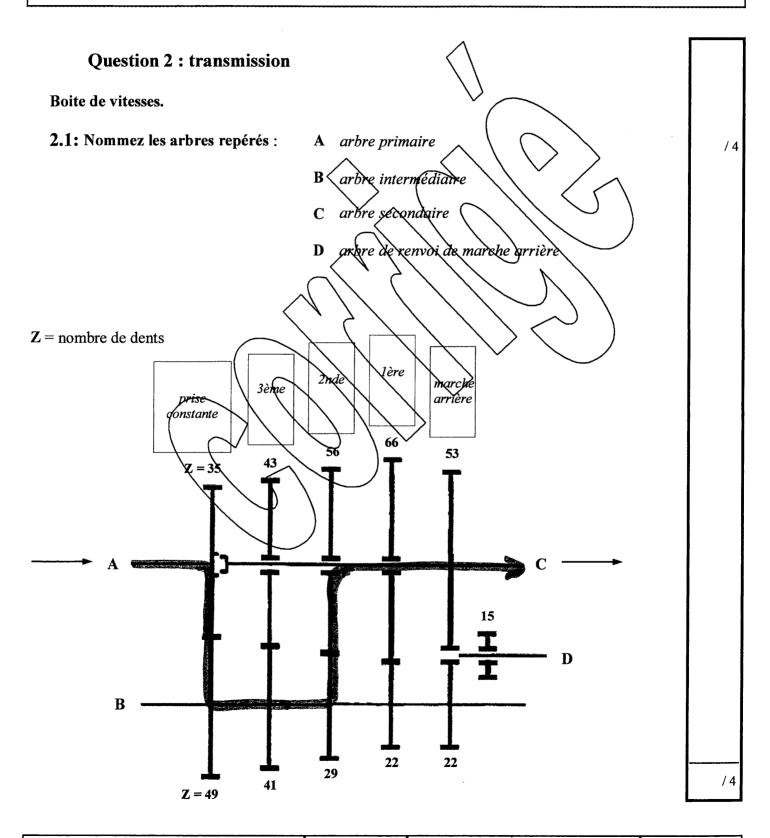
En cas de colmatage de la cartouche filtrante, le clapet by-pass laisse circuler l'huile sans passer par le filtre.

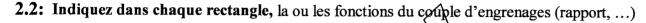
- Clapet de décharge:

Le clapet de décharge permet de réguler la pression et le débit d'huile délivrés par la pompe à huile

Epreuve: EP1 2éme PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 7/13

/5


/2


/2

/2

/2

/ 13

ex:

2.3: Tracez la chaîne cinématique de la 2^{ème} en rouge

2.4: Calculez le rapport de la 2^{ème}. <u>Inscrivez vos calculs</u>.

$$R = \frac{35 \times 29}{49 \times 56} = 0.369$$

2.5: Quelle est la vitesse de sortie en 2 ème si la vitesse d'entrée est de 1800 tr / mn?

$$v = 1800 * 0.360 = 6642 \text{ tr} \text{ mg}$$

2.6: Quel est le couple de sortie en 3 ème si le couple d'entrée est de 90 daN / m?

$$C = 90 / 0.369 = 243.9 \, daN / m$$

2.7: Combien de rapports y a t'il?

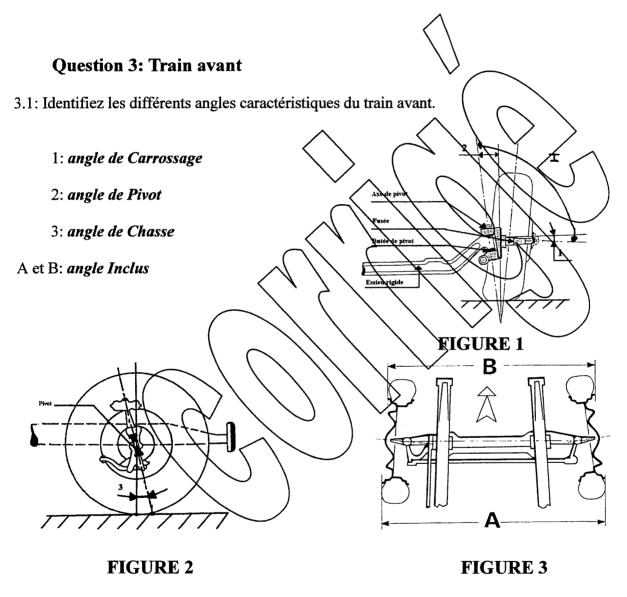
4 + marche arrière

Comment obtient-on une vitesse de sortie égale à la vitesse d'entrée ?

par une prise directe

/ 5

/ 5


/6

/ 5

/ 5

/ 4

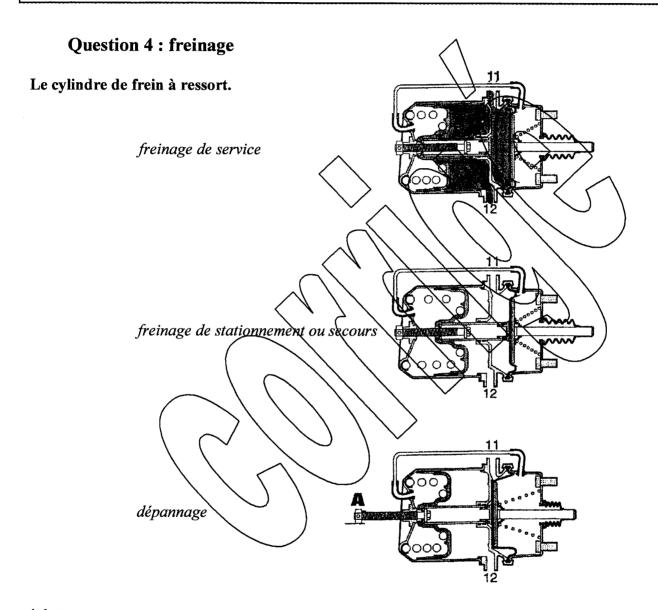
/ 30

3.2: Tracez, sur la **figure 1**,l'angle inclus.

3.3: complétez les phrases suivantes:

-Si A est supérieur à B, il y a du pincement.

- Si A est inférieur à B, il y a de l'ouverture.


/12

/2

/4

/ 18

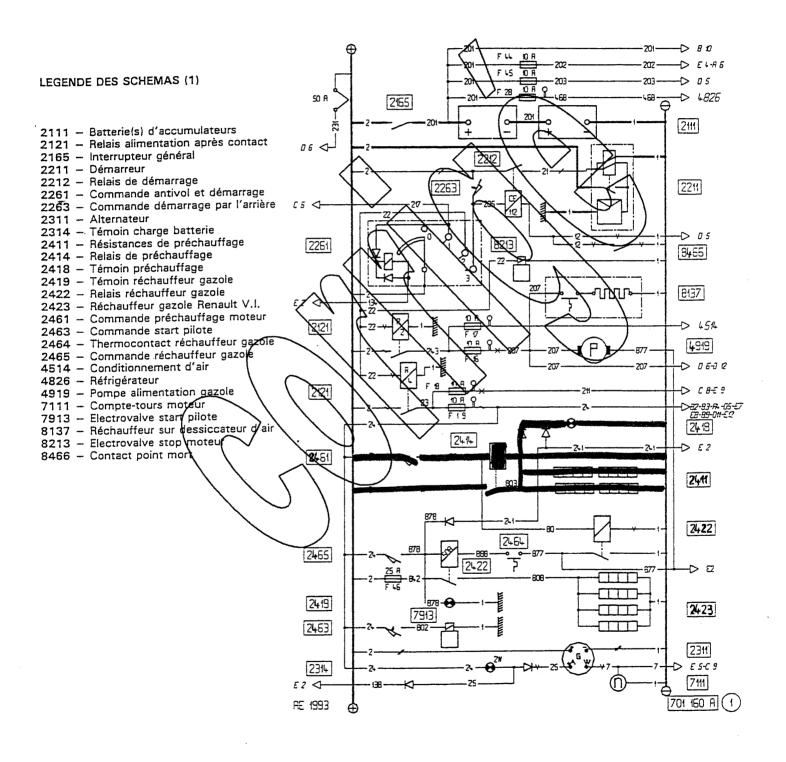
Epreuve: EP1 2éme PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 10/13

4.1: Dans quelle fonction chaque cylindre à ressort est-il représenté?

4.2: Coloriez les chambres (volumes) sous pression.

4.3: Quelle est la fonction de la vis repérée A?

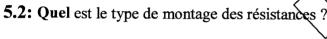
desserrer les freins en cas de panne du véhicule


/ 16

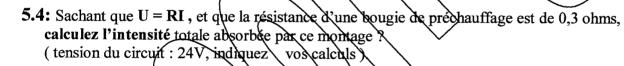
/9

/4

/3


Epreuve: EP1 2ème PARTIE TECHNOLOGIE SESSION 200 Codes: 04-2158 Page 11/13

Question 5: électricité


Le circuit de préchauffage.

5.1: Sur le schéma (folio 12) repérez en le coloriant le circuit de préchauffage.

mixte : série—parallèle

5.3: Par quoi sont elles alimentées ? par un relais

résistance équivalente à deux résistances montées en série Re = 0,3 + 0,3 = 0,6 ohms résistance totale du montage $\frac{1}{Re} = \frac{1}{0,6} + \frac{1}{0,6}$ Re = 0,3 ohms

$$I = \frac{U}{R} = \frac{24}{0.6} \qquad I = 80 \text{ Ampères}$$

5.5: Si une bougie de préchauffage est défectueuse, que se passe t'il dans le circuit ? (fonctionnement et intensité)

deux bougies fonctionnent encore

l'intensité dans le circuit est alors 40 Ampères

/ 24

Epreuve: EP1 2ème PARTIE TECHNOLOGIE

SESSION 200

Codes: 04-2158

Page 13 / 13

/6

/4

/3

/3

/ 8