SECTEUR 4 – MÉTIERS DE LA SANTÉ ET DE L'HYGIÈNE

A lire attentivement par les candidats

- Ce sujet est à traiter par les candidats inscrits au BEP.
- Les candidats répondront sur la copie. Les 3 annexes seront à compléter par les candidats puis agrafées dans la copie anonymée.
- La clarté des raisonnements et la qualité de la rédaction interviendront pour part importante dans l'appréciation des copies.

Matériel autorisé

- L'usage des instruments de calcul est autorisé :
- L'usage des instruments de géométrie est autorisé.
- Tout échange de matériel est interdit pendant l'épreuve.

Liste des BEP du secteur 4

BEP Maritime de conchyliculteur BEP Carrières sanitaires et sociales BEP Bioservices

Barème

Mathématiques:

Exercice 1: Statistiques 3 points
Exercice 2: Fonction 5 points
Exercice 3: Trigonométrie 2 points

Sciences:

Exercice 1 :Mécanique2 pointsExercice 2 :Electricité – Grandeurs physiques4 pointsExercice 3 :Chimie4 points

GROUPEMENT INTERACAD	ÉMIQUE II	Session 2005	Code:	
BEP MATHÉMATIQUES – SC	TENCES PHYSIQ	UES		
Secteur 4 – Métiers de la santé e	t de l'hygiène		•	
SUJET	D	urée : 2 heures	Page 1/9	

MATHÉMATIQUES

Exercice 1 (3 pts)

Aux jeux paralympiques d'Athènes 2004, les six premiers pays ont obtenu 576 médailles réparties selon le tableau de résultats ci-contre :

Sur les 74 médailles gagnées pour la France, 24 % sont des médailles d'or.

1.1 Calculer le nombre de médailles d'or obtenues par la France.

(arrondir à l'unité).

- 1.2 Compléter le tableau en annexe 1 avec les fréquences en % et les angles.
- 1.3 Représenter ces résultats par un diagramme circulaire sur l'annexe 1.

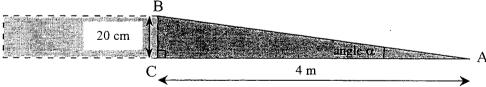
Rang	Pays	Nom	N ^{hre} médailles
1 .	CHN	Chine	141
2	AUS	Australie	100
3	GBR	Grande-Bretagne	94
4	USA antonion	Etats-Unis d'Amérique	88
5	GER	Allemagne	79
6	FRA	France	74
		TOTAL:	576

Exercice 2 (5 pts)

Pierre (en vélo) et son frère Jean (en fauteuil roulant) sont sportifs et s'amusent ensemble.

Pierre avec son vélo roule à la vitesse de 150 mètres par minute. Jean, avec son fauteuil roulant, se déplace à 100 mètres par minute.

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 2/9


- 2.1 Calculer la distance parcourue par Pierre en 5 minutes?
- 2.2 On désigne par x le temps en minutes. On désigne par f(x) la distance parcourue en mètres par Pierre Donner l'expression de f(x).
- 2.3 Pour faire une course équitable, Pierre laisse 125 mètres d'avance à Jean.

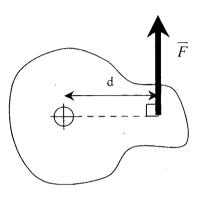
La distance en mètres parcourue par Jean est alors donnée par la fonction g définie sur l'intervalle [0;4] par : g(x) = 100 x + 125Indiquer la nature de la fonction g.

- 2.4 Compléter le tableau en annexe 2.
- 2.5 Représenter graphiquement les fonctions f et g dans le repère de l'annexe 2 définies par f(x) = 150x et g(x) = 100x + 125 sur [0; 4].
- 2.6 Déterminer graphiquement le temps nécessaire à Pierre pour rattraper Jean. (laisser les traits de lecture apparents)
- 2.7 Retrouver ce résultat par le calcul.

Exercice 3 (2 pts)

Une rampe est prévue devant un magasin pour l'accès des personnes en fauteuil roulant et les poussettes pour enfants.

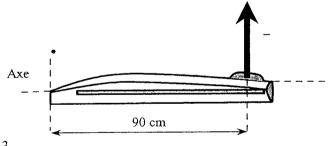
En précisant la relation trigonométrique utilisée, calculer en degrés l'angle α de cette rampe par rapport au sol. Donner le résultat à 0,01 degré.


BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 3/9

Formulaire de sciences		
$n = \frac{m}{M}$	$E = P \times t$	$Q = m \times C \times (\theta_f - \theta_i)$
$P = m \times g$	$P = U \times I$	$M = F \times d$

Exercice 1 (2 pts)

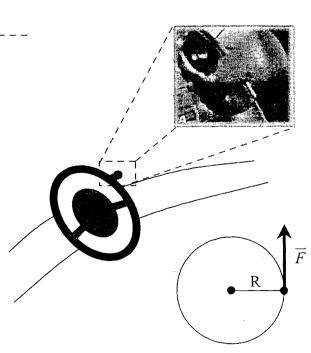
Pour un solide mobile autour d'un axe, on peut calculer le moment de la force appliquée.


1.1 Ecrire la formule pour calculer le moment d'une force en précisant les unités.

1.2

Pour ouvrir une porte de voiture, une force de 30 N est appliquée sur la poignée.

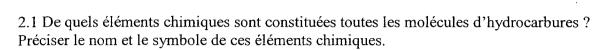
Calculer le moment de cette force par rapport à l'axe de rotation.


1.3

Un dispositif conçu pour les personnes ne disposant que d'un bras valide permet de tourner le volant d'une voiture à l'aide d'une boule fixée sur le volant.

(voir figure)

Le volant tourne dès qu'un moment de 3 N.m est appliqué.


Calculer l'intensité de la force qu'il faut exercer pour tourner le volant (rayon R = 20 cm)

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 4/9

Exercice 2 (4 pts)

La torche olympique d'Athènes 2004 qui a été portée par tous les relayeurs avant les JO devait toujours rester allumée. Pour cela, elle contient une cartouche de gaz composés d'hydrocarbures.

- 2.2 Dans le tableau de l'annexe 3, compléter le tableau avec les formules chimiques des hydrocarbures.
- 2.3 Dans la vie courante, on utilise le gaz propane.
 - 2.3.1 Compléter et équilibrer l'équation bilan de la combustion du propane :

$$C_3H_8 + \dots CO_2$$

- 2.3.2 Nommer les produits formés pendant cette combustion.
- 2.4 Calculer la masse molaire M du propane.

Données: $M_C = 12 \text{ g/mol } M_S = 32 \text{ g/mol } M_O = 16 \text{ g/mol } M_H = 1 \text{ g/mol}$

2.5 Calculer le nombre de moles de propane contenue dans une cartouche de 440 g de gaz.,

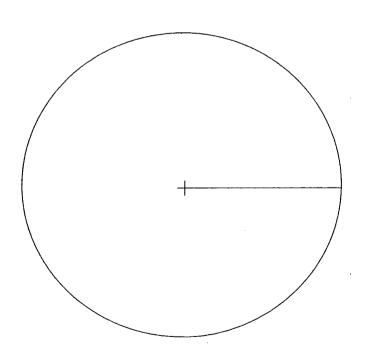
Exercice 3 (4 pts)

La rampe d'accès du magasin est équipée de six spots éclairants de 40 W chacun. L'ensemble fonctionne de 18 à 21 h sans interruption sous 220 V.

- 3.1 Calculer l'intensité du courant qui traverse un spot. (arrondir à 0,01).
- 3.2 Calculer la puissance utilisée lorsque tous les spots fonctionnent.
- 3.3 Calculer en Wh l'énergie électrique consommée en une journée.
- 3.4 Calculer la dépense mensuelle (30 jours) si 1 kWh est facturé 0,051 € (arrondir au centime).

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 5/9

ANNEXE 1


A RENDRE AVEC LA COPIE

Exercice 1 (MATH.)

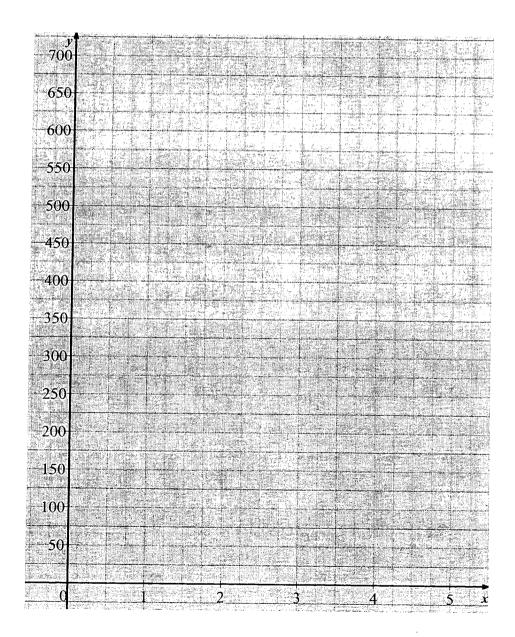
1.2

Pays	Nombre de médailles	Fréquences en % (arrondir à 0,1)	Angles (arrondir au degré)
Chine	141		
Australie	100		
Royaume uni	94		
Etats - Unis	88		
Allemagne	79		
France	74		
TOTAL	576		<u>.</u>

1.3

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 6/9

ANNEXE 2


A RENDRE AVEC LA COPIE

Exercice 2 (MATH.)

2.4

x	0	l	2	3	4
f(x)	0			450	
g(x)	125			425	

2.5

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 7/9

ANNEXE 3

A RENDRE AVEC LA COPIE

Exercice 2 (SCIENCES)

Hydrocarbure	Formule brute	Formule développée
Butane		H - H H H H $H - C - C - C - C - H$ $H + H H H$
Propane	C ₃ H ₈	
Ethène	C ₂ H ₄	

BEP MATHÉMATIQUES – SCIENCES PHYSIQUES	SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	Page 8/9

FORMULAIRE BEP SANITAIRE ET SOCIAL

Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$
;

$$(a-b)^2 = a^2 - 2ab + b^2$$
;

$$(a+b)(a-b) = a^2 - b^2$$
.

Puissances d'un nombre

$$(ab)^{m} = a^{m}b^{m}$$
; $a^{m+g} = a^{m}a^{n}$; $(a^{m})^{n} = a^{mn}$

Racines carrées

$$\sqrt{ab} = \sqrt{a}\sqrt{b} \ ; \ \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \, .$$

Suites arithmétiques

Terme de rang 1 : u₁; raison r

Terme de rang n:

$$u_n = u_{n-1} + r ;$$

$$u_n = u_1 + (n-1)r.$$

Suite géométrique

Terme de rang 1 : u₁; raison q.

Terme de rang n:

$$U_n = U_{n-1}Q$$
;

$$U_n = U_1 Q^{n-1}$$
.

Statistiques

Moyenne x:

$$\bar{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$

Ecart type σ :

$$\sigma^{2} = \frac{n_{1}(x_{1} - \overline{x})^{2} + n_{2}(x_{2} - \overline{x})^{2} + ... + n_{p}(x_{p} - \overline{x})^{2}}{N}$$

$$=\frac{n_1 x_1^2 + n_2 x_2^2 + ... + n_p x_p^2}{N} - \overline{x}^2$$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

$$AH.BC = AB.AC$$

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$.

Énoncé de Thalès (relatif au triangle)

Alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Position relative de deux droites

Les droites d'équations

$$y = ax + b$$
 et $y = a'x + b$

sont

- parallèles si et seulement si a =a'
- orthogonales si et seulement si aa $^{3} = -1$

Calculs vectoriel dans le plan

$$\begin{split} & \stackrel{-}{v} \begin{vmatrix} x \\ y \end{vmatrix}; \stackrel{-}{v} + \stackrel{-}{v'} \begin{vmatrix} x + x' \\ y + y' \end{cases}; \quad \lambda \stackrel{-}{v} \begin{vmatrix} \lambda x \\ \lambda y \end{vmatrix} \\ & \| \stackrel{-}{v} \| - \sqrt{x^2 + y^2} \right]. \end{split}$$

Calculs d'intérêts

C: capital; t: taux périodique; n: nombre de périodes; A: valeur acquise après n périodes.

Intérêts simples

Intérêts composés

$$I = Ctn$$
;

$$A = C(1+t)^n$$

$$A = C + I$$

BEP MATHÉMATIQUES – SCIENCES		SUJET
Secteur 4 – Métiers de la santé et de l'hygiène	2 heures	Page 9/9