GORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGE - SESSION 2006

BACCALAURÉAT PROFESSIONNEL Artisanat et Métiers d'Art Art de la pierre

Epreuve Scientifique et Technique

Partie B: Mathématiques et Sciences Physiques

Durée: 2 heures

Coefficient: 2

SCIENCES PHYSIQUES

EXERCICE 1: (3,5 points)

1.1. L'ion calcium Ca²⁺ et l'ion sulfate SO₄²⁻

(1 pt)

1.2. Le nom chimique du gypse est le sulfate de calcium.

(0,5 pt)

1.3. CaSO₄,
$$\frac{1}{2}$$
H₂O + $\frac{3}{2}$ H₂O

→ CaSO₄,2 H₂O (1 pt)

1.4. $M(CaSO_4) = 40.1 + 32.1 + 4 \times 16$ Masse molaire moléculaire du $CaSO_4 = 136.2$ g/mol

EXERCICE 2: (4,5 points)

$$2.1. M = 2450 kg$$

$$P = M \cdot g = 2450 \times 10 = 24500$$

P = 24500 N (1 pt)

2.2.
$$p = \frac{F}{S} = \frac{24500}{0,098} = 250000$$

 $p = 250\ 000\ Pa\ soit\ 2,5\ bars.\ (1,5\ pt)$

2.3.
$$\rho = \frac{2450}{0,8386} = 2921,53$$

$$\rho = 2 922 \text{ kg/m}^3$$
 (1 pt)

2.4. Les trois types de transfert thermique sont:

rayonnement

conduction

convection

(1 pt)

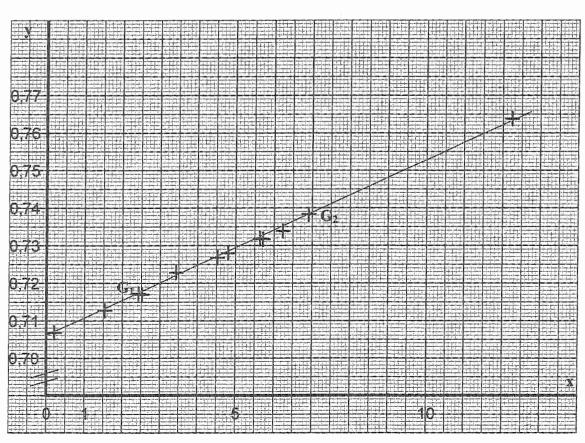
MATHÉMATIQUES

EXERCICE 3: (4,5 points)

3.1.
$$x_{G1} = \frac{0,2+1,5+2,5+3,4+4,5}{5} = \frac{12,1}{5} = 2,420$$

$$y_{G1} = \frac{0,707+0,713+0,717+0,723+0,727}{5} = \frac{3,587}{5} = 0,7174$$
G₁ (2,420; 0,717)

Voir annexe 1 pour le placement du point G1.


3.2. Voir annexe 1 pour le placement du point G_2 Et le tracé de la droite (G_1G_2) .

(0,5 pt)

3.3
$$a = \frac{0.738 - 0.717}{6.900 - 2.420} = 0.00468$$
 $a = 0.0047$ (1 pt)

3.4.1.
$$\lambda = \frac{\ln 2}{48,8 \times 10^9}$$
 $\lambda = 1,42 \times 10^{-11} \ (l \ pt)$
3.4.2. $t = \frac{\ln(0,0045+1)}{1,42 \times 10^{-11}} = \frac{0,00449}{1,42 \times 10^{-11}} = 316 \ 197 \ 183$ $t = 316 \ MA$ $(l \ pt)$

Annexe 1

EXERCICE 4: (7,5 points)

4.2.

4.2.1.
$$f'(x) = -\frac{2}{750}x + \frac{1}{3}$$

$$f'(x) = -\frac{1}{375}x + \frac{1}{3}$$
 (1 pt)

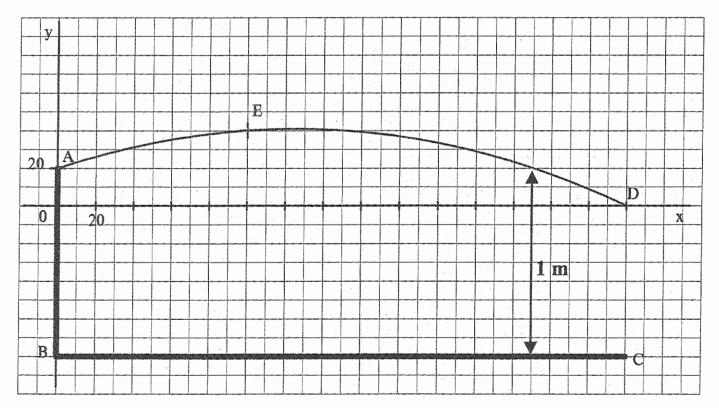
$$4.2.2. f'(x) = 0$$

4.2.2.
$$f'(x) = 0$$
 pour $x = \frac{375}{3}$

$$f'(x) = 0 \text{ si } x = 125.$$
 (1 pt)

4.2.3.

X	0		125		300
Signe de $f'(x)$		+	0	_	
f	20	-	40,83		A 0


(1 pt)

424

x 0 45 100 125 150 225 270 300 $y = f(x)$ 20,0 32,3 40,0 40,8 40,0 27,5 12,8 0									
y = f(x) 20,0 32,3 40,0 40,8 40,0 27,5 12,8 0	x	0	45	100	1/3	150			300
	y = f(x)	20,0	32,3	40,0	40,8	40,0		12,8	0

(1 pt)

4.2.5. Représentation graphique: (1 pt)

4.3. Distance maximale entre le mur et le bord du dessus de bar : D = 40.8 + 80

D = 120.8 cm (1 pt)

4.4. La largeur de l'entrée est de 1 m quand x = 250 cm. (voir graphique).

(1 pt)