BACCALAURÉAT PROFESSIONNEL PRODUCTIQUE MÉCANIQUE

Option : décolletage

E1 ÉPREUVE SCIENTIFIQUE ET TECHNIQUE Sous-épreuve E12 MATHÉMATIQUES ET SCIENCES PHYSIQUES

Durée : 2 heures

Coefficient: 2

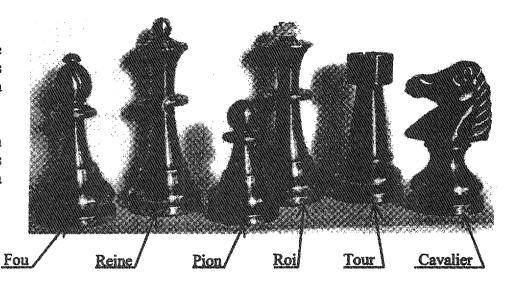
Le matériel autorisé comprend toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Réf. C n° 99 - 186 du 16 - 11 - 1999).

Ce sujet comporte 8 pages dont le formulaire et 2 annexes (à remettre avec la copie).

MATHÉMATIQUES (15 points)

On fabrique une série de pièces pour des jeux d'échecs à l'aide d'un tour à commande numérique.

Dans les exercices 1 et 2, on étudie certains éléments d'une de ces pièces, la REINE.



EXERCICE 1: (7 points) Partie FG du profil de la Reine.

La figure tracée sur le papier millimétré de l'annexe 1 représente une partie du profil de révolution de la Reine.

On se propose de construire la partie FG. Cette partie est la représentation graphique notée E de la fonction f définie sur l'intervalle [32,5; 57,5] par :

$$f(x) = 0.005x^2 - 0.25x + 6.8$$
.

- 1. Calculer f'(x) où f' désigne la dérivée de la fonction f.
- 2. Déterminer le signe de f'(x) pour x appartenant à l'intervalle [32,5 ; 57,5]. En déduire le sens de variation de f sur cet intervalle.
- 3. Compléter le tableau de valeurs de la fonction f situé en annexe 1.
- 4. a) Calculer f'(50).
 - b) Montrer que la tangente (Δ) à la courbe $\mathscr C$ au point d'abscisse 50 a pour équation :

$$y = 0.25x - 5.7$$
.

- c) Tracer cette tangente (Δ) dans le repère de l'annexe 1.
- 5. Compléter le profil de révolution de la Reine en traçant la courbe & dans le repère de l'annexe 1.

EXERCICE 2: (3 points) Partie supérieure de la Reine.

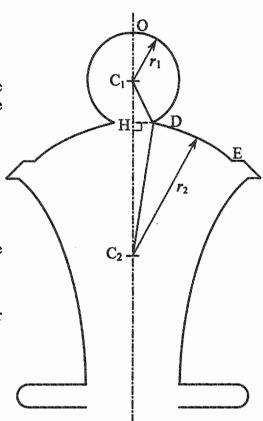
La figure ci-contre représente la vue en coupe de la partie supérieure de la Reine. Elle est constituée de deux arcs de cercle de centres respectifs C_1 et C_2 et de rayons respectifs r_1 et r_2 .

On se propose de déterminer la longueur HD.

On donne:

$$r_1 = 4$$
 mm,
 $r_2 = 11,6$ mm,
 $C_1C_2 = 15$ mm.

- Dans le triangle quelconque C₁C₂D, calculer la mesure de l'angle C₂C₁D arrondie au dixième de degré.
- 2. Dans le triangle rectangle C₁DH, déterminer la longueur HD arrondie au dixième de mm.



EXERCICE 3: (5 points) Débit de la matière première.

On usine la Reine, le Roi, le Fou et la Tour dans des blocs cylindriques de même diamètre provenant de barres de 4,5 m de long.

Pour le Roi et la Reine, ces blocs mesurent 9 cm de long : on les désigne par la lettre A. Pour le Fou et la Tour, ces blocs mesurent 7,5 cm de long : on les désigne par la lettre B.

On note x le nombre de blocs A et y le nombre de blocs B que l'on peut extraire d'une barre de 4,5 m de long. Les nombres x et y sont des nombres entiers positifs.

- 1. Montrer que la contrainte sur la longueur se traduit par l'inéquation : $9x + 7,5y \le 450$. Vérifier que cette inéquation peut encore s'écrire : $1,2x + y \le 60$.
- 2. Dans le repère de l'annexe 2, tracer la droite d'équation : y = -1.2x + 60.
- 3. Résoudre graphiquement l'inéquation : $1,2x + y \le 60$.
- 4. Répondre aux questions suivantes en laissant apparents les traits de construction nécessaires à la lecture sur le graphique:
 - a) Peut-on extraire 30 blocs A et 30 blocs B d'une barre?
 - b) Si on extrait 12 blocs A d'une barre, quel est le nombre maximal de blocs B que l'on peut extraire de cette même barre?

ANNEXE 1 (À REMETTRE AVEC LA COPIE)

EXERCICE 1:

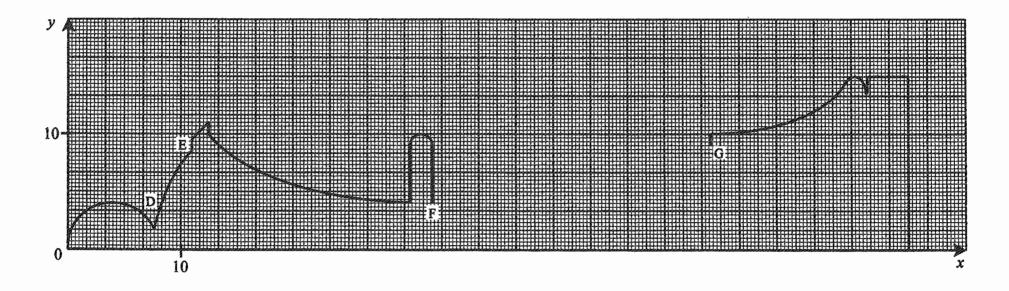
Question 4:

Tableau de valeurs (arrondir les résultats au dixième)

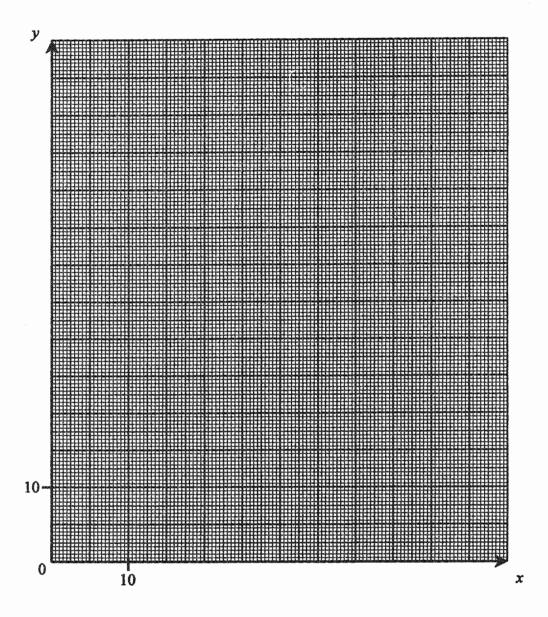
	32,5	35	40	45	50	55	57,5
f(x)			,		-		

Questions 5 et 6:

Représentation graphique



ANNEXE 2
(À remettre avec la copie)

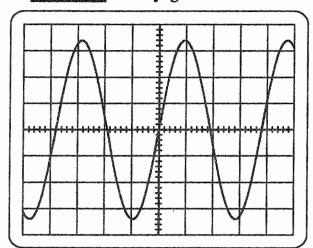


SCIENCES PHYSIQUES (5 points)

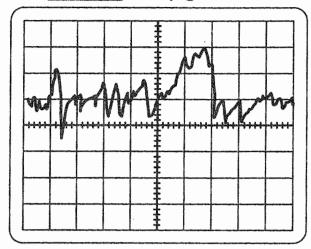
EXERCICE 1: (3 points) Acoustique

Sur l'écran d'un oscilloscope on obtient les signaux suivants captés à l'aide d'un microphone.

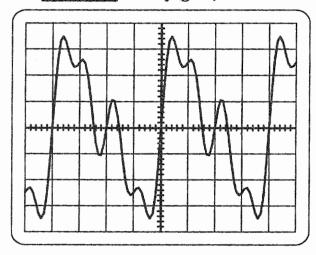
Signal nº 1: balayage 2 ms/div.



Signal n° 2: balayage 1 ms/div.



Signal n° 3: balayage 0,1 ms/div.



- 1. Pour chaque signal sonore préciser s'il s'agit d'un bruit, d'un son pur ou d'un son complexe. Justifier votre réponse.
- 2. Pour les signaux n° 1 et n° 3:
 - a) Déterminer la période.
 - b) Calculer la fréquence et préciser la hauteur de chaque son (arrondir à l'unité).

Rappels:	Para de Primero processo de defença de parte control de descuencia, epide processo en	он и на	general of the soften are easily if the cold make the configuration in the sale diving a large space and a sec
De 0 à 30 Hz De 30 à 100 Hz De 100 à 300 Hz De 300 à 1 250 Hz	infrasons très graves graves médiums	De 1 250 à 5 000 Hz De 5 000 à 16 000 Hz Plus de 16 000 Hz	aigus très aigus ultrasons

EXERCICE 2: (2 points) Électricité

La plaque signalétique de la scie permettant de débiter les blocs servant à usiner les pièces de jeu d'échecs est reproduite ci-contre.

$$230 V - 50 Hz$$
 $Pa = 1,5 kW$
 $\cos \varphi = 0,96$
 $\eta = 65 \%$

- 1. Calculer l'intensité du courant électrique qui traverse cette machine (arrondir au dixième).
- 2. Calculer la puissance utile.

Rappels:
$$P_a = UI \cos \varphi$$
; $\eta = \frac{P_u}{P_a}$.

FORMULAIRE DE MATHÉMATIQUES DU BACCALAURÉAT PROFESSIONNEL

Secteur industriel: Artisanat, Bâtiment, Maintenance - Productique

(Arrêté du 9 mai 1995 - BO spécial nº 11 du 15 juin 1995)

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
<u>1</u>	_1_
x	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : In

$$\ln{(ab)} = \ln{a} + \ln{b}$$

$$\ln\left(a^n\right) = n \ln a$$

 $\ln (a/b) = \ln a - \ln b$

Équation du second degré $ax^2 + bx + c = 0$ $\Delta = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si ∆ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1:u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - a}$$

Trigonométrie

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

 $\cos 2a = 2\cos^2 a - 1$

 $=1-2\sin^2 a$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

$$\overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Moyenne
$$\overline{x} = \frac{1-1}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$$

Écart type
$$\sigma = \sqrt{V}$$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

$$\sin \widehat{B} = \frac{AC}{BC}$$
; $\cos \widehat{B} = \frac{AB}{BC}$; $\tan \widehat{B} = \frac{AC}{AB}$

Résolution de triangle

$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc \sin \widehat{A}$

Trapèze: $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h : Volume Bh Sphère de rayon R:

Aire:
$$4\pi R^2$$
 Volume: $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B de hauteur h: Volume $\frac{1}{2}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\overrightarrow{v}.\overrightarrow{v}' = xx' + yy'$$

$$||\overrightarrow{v}|| = \sqrt{x^2 + y^2}$$

$$||\overrightarrow{v}|| = \sqrt{x^2 + y^2}$$

$$||\overrightarrow{v}|| = \sqrt{x^2 + y^2 + z^2}$$
Si $\overrightarrow{v} \neq \overrightarrow{0}$ et $\overrightarrow{v}' \neq \overrightarrow{0}$:

$$\overrightarrow{v}.\overrightarrow{v}' = ||\overrightarrow{v}|| \times ||\overrightarrow{v}|| \cos(\overrightarrow{v}, \overrightarrow{v}')$$

$$\vec{v} \cdot \vec{v}' = 0$$
 si et seulement si $\vec{v} \perp \vec{v}'$