
coefficient 2

Epreuve - E1A Etude d'un système d'aéronef. OPTION: Mécanicien Système Cellule.

DOSSIER QUESTIONS / REPONSES

CE DOSSIER EST COMPOSE DES DOCUMENTS:

Questions / Réponses Pages 1 à 15.

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER - OUESTIONS / REPONSES

	Barème.		
1 Etude Aérodynamique hypersustentateu			
Ouestion 1.1	1	/5	
Ouestion 1.2	2	/2	
Ouestion 1.3	3	/3	Note partie 1
Ouestion 1.4	4	/3	1 1000 2000 1
Ouestion 1.5	5	/4	
Ouestion 1.6	6	/3	/ 20
Sous total 1		/ 20	
2 Etude technologique du système de sorti	e des volets de bord		
Ouestion 2.1	7	/6	
Ouestion 2.2	8	/16	Note natio ?
Ouestion 2.3	9	/6	Note partie 2
Ouestion 2.4	10	16	7
Ouestion 2.5	11	/6	/ 40
Sous total 2		/ 40	-
3 Etude cinématique des volets de bord de	fuite.		
Ouestion 3.1	12	/2	
Ouestion 3.2	13	/2	
Ouestion 3.3	14	/2	Note partie 3
Question 3.4	15	/4	1 -
Sous total 3		/ 10	10
4 250			
4 Etude technologique vérin rotatif de con	illiande (Rotat y Ac	tuatur).	
4.1 - Engrenage - train épicycloidal. Ouestion 4.1	16	/8	
Ouestion 4.2	17	/3	Note partie 4
Ouestion 4.3	18	/2	1 TABLE PRIESE 7
Ouestion 4.4	19	14	-
Question 4.4 Question 4.5	20	/6	-
Ouestion 4.6	20	/4	
4.2 - Limiteur de couple	21	/ 4	/ 50
Ouestion 4.6	22	/ 2	
Ouestion 4.7	23	12	-
4.3 - Etude graphique	23	1 4	
Ouestion 4.9	24	/ 15	
4.4 - Chaîne de cotes	24	/13	
Ouestion 4.10	25	/ 5	
Sous total 4	25	/ 50	-
5 Généralités moteur.		1 30	
Ouestion 5.1	26	/ 2	T
Question 5.1 Question 5.2	27	/ 2	-
Question 5.2 Question 5.3	28	/2	Note partie 5
Question 5.4	29	14	True Present 7
Ouestion 5.5	30	/10	-
Sous total 5	50	/ 20	/ 20
		1 23	
TOTAL GENERAL	30 Questions		/ m40

Note finale sur 20

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES:

Page 1 / 15

1. Etude Aérodynamique hypersustentateur (DT p 1,2 & 3 / 24)

Ouestion 1.1 Justifier par le calcul, en	configuration	vol de croisière, le coefficien	$t C_z = 0.6$	37
		19-19-19-19-19-19-19-19-19-19-19-19-19-1	/	15
Question 1.2 : (entourer la bonne réponse).				12
Pour obtenir $C_z = 0.65$, l'aile doit être montée s	sur le	Légèrement négatif,		Ā
fuselage avec un angle de calage :		Nul,		B
		Légèrement positif.		C
Question 1.3 Déterminer le coefficient	C _z en configu	uration atterrissage.(à partir d	e l'abaque).
	· · · · · · · · · · · · · · · · · · ·		·/	13
		$C_{\cdot} = C_{\cdot}$	1	
		· · · · · · · · · · · · · · · · · · ·		
Question 1.4 (entourer la bonne réponse).				 13
Avec l'aile lisse il est impossible d'obtenir		Volet seulement,		A
un $C_1 = 2.3$ pour cela il faut travailler		Bec seulement,		В
avec l'aile en configuration :		Bec et volet.		C
Question 1.5 Le déploiement du volet perme	t d'augmenter	r la portance de l'aile. Donner	deux	· - · · · · · ·
explications.			·/	14
			L	
Question 1.6 le mouvement de translation de	u volet vers l'	arrière fait apparaître une fent	e entre l'a	ile et
le volet : expliquer succinctement pourquoi ?			/3	2
		account.		

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

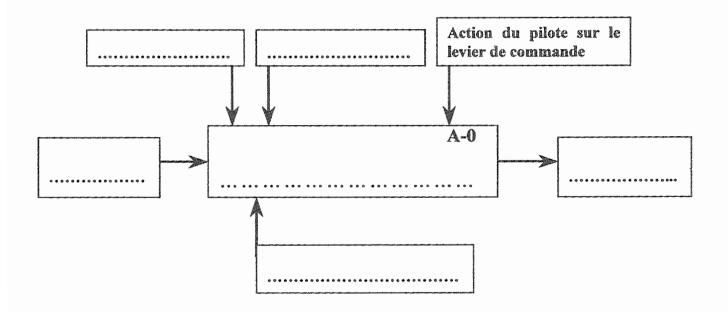
option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER OUESTIONS / REPONSES:

Page 2 / 15


2. Etude technologique du système de sortie des volets de bord de fuite.

Question 2.1

...../6

Compléter le diagramme d'analyse fonctionnelle descendante (SADT) de niveau A-0 du système d'entrée-sortie des volets par les termes ci-dessous.

1	Système d'entraînement des volets.	4	Energie électrique
2	Volet position rentrée	5	Déployer les volets
3	Energie hydraulique	6	Volet position déployé.

Question 2.2

Complétez le diagramme DQR p 4/15 en utilisant les informations E1, E2, E3, E4, S1, S2, S3 et S4 du DT p11/24.

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

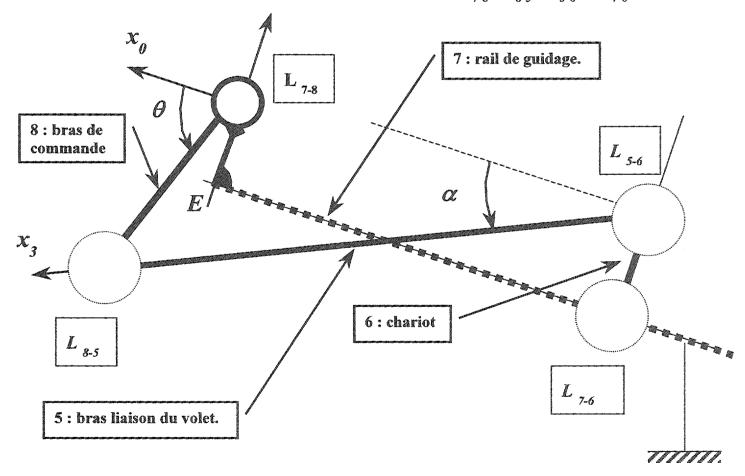
option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER OUESTIONS / REPONSES: Page 3 / 15

<u>Question 2.3</u> Indiquer la nature des liaisons suivantes : (DT p9 / 24).


_	_	_	_	_	_	_	_	-	_	_	_	 _
									F	É	-	
						• •		ļ		€	•	

Liaison	Nature de la liaison	Axe	Rotation	transidin
7-8	Liaison pivot.	Oz	inensis	Calling Street
8-5		Az		
I 5-6		Bz		
7-6		Cz		

Question 2.4

Représenter schématiquement, sur la figure suivante, les liaisons L $_{7-8}$, L $_{8-5}$, L $_{5-6}$ et L $_{7-6}$:

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES: Page 5 / 15

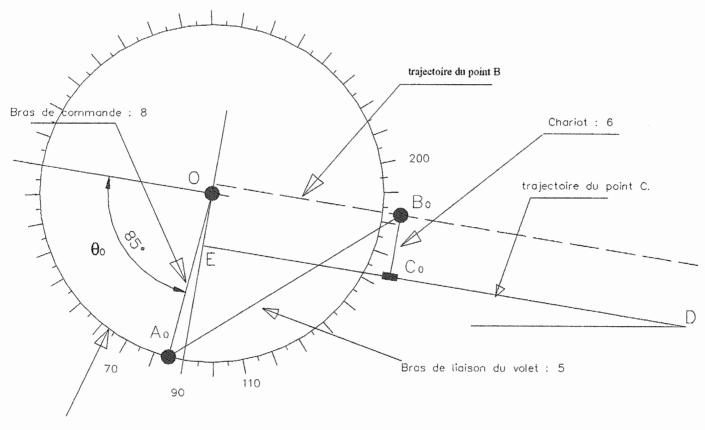
Ouestion 2.5

...../6

Sur la page Questions / Réponses 7 / 15, représenter le mécanisme, modélisé par les segments de droite [O, E], [E, D], [O, A], [A, B] et [B, C], à l'échelle 1/5 dans les configurations suivantes :

- Configuration volet rentré : configuration représentée sur le document réponse : les points mobiles du mécanisme portent l'indice $0 (\theta_0 = 85^\circ)$
- Configuration de fin de déploiement du volet en phase d'atterrissage $\theta_1 = 195$ °: les points mobiles du mécanisme porteront l'indice 1

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »


option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER OUESTIONS / REPONSES:

Page 6 / 15

trajectoire du point A.

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES: Pa

Page 7/15

Question 3.1 Déterminer la longueur minimale que doit avoir le rail de guidage ? Consulter figure 7 DT p 12/24 Réponse: Question 3.2 Consulter figure 8 DT 13 / 24 et figure 10 DT 14 / 24 .(entourez la bonne réponse) nul. Au début du déploiement, le mouvement de prépondérant par rapport à la rotation. B ./2 translation du volet vers l'arrière est : négligeable par rapport à la rotation. Ouestion 3.3 Consulter figure 8 DT 13 / 24 et figure 10 DT 14 / 24 .(entourez la bonne réponse) prépondérant par rapport à la translation. A la fin du déploiement, le mouvement de nul. B rotation du volet est : négligeable par rapport à la translation. **Question 3.4** On suppose que le mouvement du chariot 6 par rapport au rail de guidage 7 est uniforme pendant une durée de t = 4 secondes. En supposant que la longueur du rail de guidage est de 900 mm, calculer la vitesse de translation moyenne V_{tm} exprimée en millimètre par seconde./4 Réponse:

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

3. Etude cinématique des volets de bord de fuite.

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES:

Page 8 / 15

4.	Etude technologique vérin rotatif de commande	(Flap Rotary Actuator)	٠
	man the terminal terminal property and the terminal termi	1 - 0102 - 10 0000 , - 100000000 ,	

Engrenages – train épicycloïdal.

Question 4.1

A l'aide du DT 17/24, DT 19/24 et du DT 20/24, identifier les éléments (repère) des trains épicycloïdaux 1 et 2 présents dans le Flap Rotary Actuator.

	Premier train épicycloïdal	Second train épicycloïdal	
Planétaire (P)			/2
Satellite (S)			/2
Porte satellite (PS)			/2
Couronne (C)			/2

Question 4.2

-	Indiquer les repères et la nature des éléments qui sont en commun aux trains épicycloïdaux 1 et 2.	//	Market Spill State Comments of Control of Comments
dungeren and appropriate the second		.12	and the second of the second o

Question 4.3

Pour qu'un train épicycloïdal fonctionne, il faut qu'un des éléments soit bloqué. Indiquer l'élément bloqué sur chaque train : mettre une croix dans la case correspondante.

	Repère 4	Repère 6	Repère 7	Repère 8	Repère 10	Repère 11
Train N°1						
Train N°2						

Question 4.4

...../2

En vous reportant au formulaire DT 20/24 sur les trains épicycloïdaux simples, remplissez le tableau suivant :

	Numéro du cas.	Sens de rotation	on entrée/sortie			Raison: R	
		Même sens	Sens inverse	R < 1	R > 1	Réducteur	multiplicateur
Train N°1							
Train N°2							and the state of t

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES:

Page 9 / 15

Ouestion 4.5: Calcul:

En vous reportant au formulaire sur les trains épicycloïdaux simples, remplissez le tableau suivant :

	Train N°1	Train N°2/6
Formule.	$\mathbf{R}_1 = \frac{\boldsymbol{\omega}_{\dots}}{\boldsymbol{\omega}} = \frac{\dots}{\dots}$	$\mathbf{R}_2 = \frac{\mathbf{o}_{\dots}}{\mathbf{o}_{\dots}} = \frac{\dots}{\dots}$
Application Numérique	$\mathbf{R}_1 = \frac{\dots}{\dots} = \dots$	$\mathbf{R}_2 = \frac{\dots}{\dots} = \dots$

Question 4.6: Calcul de la raison R du vérin rotatif de commande.

ω11 <u></u>	/2
Etablir la formule : $\mathbf{R} = \mathbf{R}_1 \times \mathbf{R}_2 = \frac{\mathbf{o}11}{\mathbf{o}4}$	

faire l'application numérique et remplir le tableau suivant :

		1	7
 	 • •	ľ	Li i

	R	REDUCTEUR	MULTIPLICATEUR
Flap Rotary Actuator			

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER OUESTIONS / REPONSES:

Page 10 / 15

Limiteur de couple.

Consulter DT p 16 / 24.

Question 4.9 Entourer la bonne réponse

Indiquer la fonction du limiteur de couple sur le Flap Rotary Actuator.	Il a pour fonction de débrayer le système lorsque le couple limite admissible est dépassé pendant la phase de sortie du volet. Conséquence : sortie du volet continue. Il a pour fonction de forcer le système lorsque le couple limite admissible est dépassé pendant la phase de sortie du volet. Conséquence : sortie du volet continue.	В	./2
	Il a pour fonction de débrayer le système lorsque le couple limite admissible est dépassé pendant la phase de sortie du volet. Conséquence : la sortie du volet est stoppée.		

Question 4.10 Consulter DT p 6 / 24 ou DT p 15 / 24.

Si un disfonctionnement apparaît sur	Seul le volet interne est bloqué	A	
le Rotary Actuator du FAS1 (limiteur	Uram ma da madda	В	
de couple débrayé) alors	Tous les volets de l'aile interne et externe sont bloqués.	С	./2

Etude graphique.

On donne le dessin d'ensemble (DT p 17/24)

On demande sur le document Questions / Réponses page 12 / 15.

Question 4.12

Dessin de la pièce repère 4, à l'échelle 1 : 1 au crayon et aux instruments sans les arêtes cachées. (comme représenté sur le document technique 17/24 en coupe BB)

Compléter la vue de face en 1/2 coupe AA au dessus de l'axe et en vue complète sous l'axe,

...../15

Chaînes de cotes.

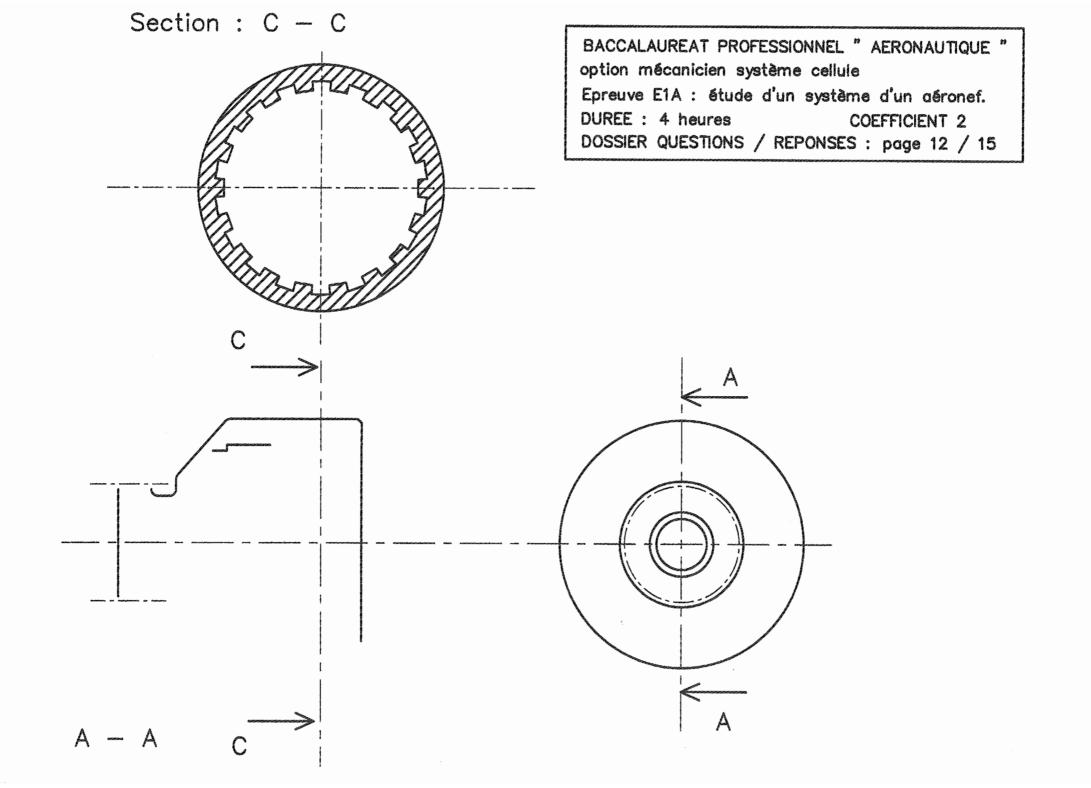
Question 4.13

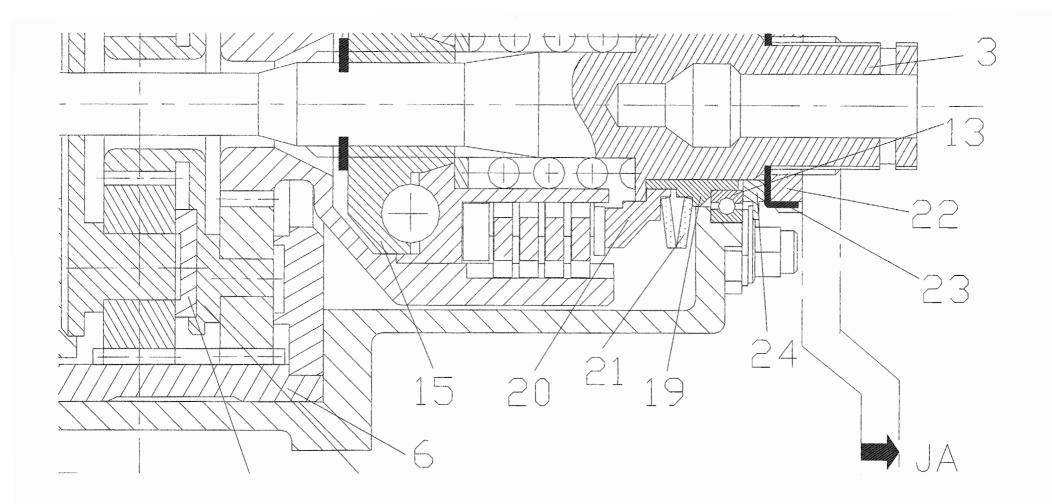
Tracer la chaîne de cotes pour la condition JA (réserve de filetage).

Faire le travail sur le document Questions / Réponses page 13 / 15

...../5

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »


option mécanicien système cellule


Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES :

Page 11 / 15

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures

COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES:

Page 13 / 15

5. Généralités moteur.

Question 5.1. Caractériser le moteur présenté ci dessous. Entourer la bonne réponse.

Simple flux – simple attelage.	A	fortune disconnectes observations which the control of the control
Simple flux – double attelage.	B	/2
double flux – double attelage.	C	

Question 5.2.

Pour identifier les numéros des stations, reportez-vous à la figure 15 du dossier technique p 21 / 24.

Dans l'expression de la poussée d'un moteur simple	Réacteur de la poussée.	A		-
flux, le terme Q_a ($V_5 - V_0$) représente le terme :	fusée de la poussée.	В	13	-
	Pression de culot de la poussée	C	12	-

Question 5.3.

Pour identifier Q_{a2} et Q_{a1} , reportez-vous à la figure 17 du dossier technique p 22 / 24.

Dans un moteur double flux, le rapport débit secondaire	Le taux de compression.	A	12	and springers to the factor to the
sur débit primaire $\lambda = Q_{a2} / Q_{a1} \text{ s'appelle :}$	Le rapport volumétrique.	В		and the state of t
Val 7 Val 8 appene.	Le taux de dilution.	C	-	-

Question 5.4.

Calculer la valeur du paramètre λ du moteur présenté sur le DT p 23 / 24	·	14
Remarque: pour le débit primaire on prendra la valeur entre le compresseur basse pression et le compresseur haute pression.		Andread and a second a second and a second and a second and a second and a second a

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES: Page 14 / 15

Question 5.5.

Calculer la poussée « TakeOff » du moteur présenté sur Dossier Technique p 23 / 24, en prenant en compte que le terme réacteur de la poussée (considérer les deux flux).

Remarque: conditions « TakeOff » $\Rightarrow V_{\theta} = 0$

BACCALAUREAT PROFESSIONNEL « AERONAUTIQUE »

option mécanicien système cellule

Epreuve E1A: étude d'un système d'un aéronef.

DUREE: 4 heures COEFFICIENT: 2

DOSSIER QUESTIONS / REPONSES: Page 15 / 15