BACCALAURÉATS PROFESSIONNELS

RESTAURATION ET ALIMENTATION

ÉPREUVE de MATHÉMATIQUES

Ce sujet comporte 5 pages. Les pages 4 et 5 sont à remettre avec votre copie d'examen.

L'usage des instruments de calcul est autorisé conformément à la circulaire 99-186 du 16 novembre 1999.

SUJET

BACCALAURÉATS PROFESSIONNELS RESTAURATION/ALIMENTATION

Session: 2006

Épreuve : **E2 : Économie, gestion de** l'entreprise et mathématiques

Sous épreuve : B2 Mathématiques Coef : 1 Durée : 1 h 00

Repère: 0609-RES EGM B

Page 1/5

Les charges journalières d'un restaurant se répartissent de la façon suivante :

- charges fixes indépendantes du nombre de repas servis : 840 € par jour ;
- charges variables : 14 € par repas servi.

PREMIÈRE PARTIE: (8,5 points)

On désigne par n le nombre de repas servis par jour dans ce restaurant.

- 1. Les trois droites tracées dans le repère de l'annexe 1 représentent, en fonction du nombre de repas n :
 - l'évolution des charges fixes,
 - l'évolution des charges variables,
 - l'évolution des charges totales (charges fixes + charges variables).

Compléter le tableau situé en annexe 1 en associant à chaque type de charges le numéro de la droite correspondant.

- 2. Exprimer le montant C(n) des charges journalières (charges fixes + charges variables) en fonction du nombre n de repas.
- 3. Le montant des charges journalières pour un repas est : $C_1(n) = \frac{C(n)}{n}$.
 - a) Montrer que $C_1(n)$ s'exprime sous la forme : $C_1(n) = \frac{840}{n} + 14$.
 - b) Calculer les charges journalières $C_1(15)$ et $C_1(30)$ d'un repas si le restaurant sert respectivement 15 et 30 repas par jour.
 - c) Recopier et compléter la réflexion du propriétaire du restaurant : "Lorsque le nombre de repas augmente, les charges journalières d'un repas ..."
- 4. Une étude statistique montre que le prix de vente p(n) (en \in) d'un repas en fonction du nombre n de repas est donné par :

$$p(n) = -0.7 n + 70.$$

Calculer p(15) et p(30).

5. En utilisant les résultats obtenus aux questions 3. et 4., quelle conclusion peut-on faire concernant le <u>résultat réalisé</u> sur un repas dans les deux cas proposés (n = 15 et n = 30)?

Rappel: Résultat = Prix de vente - Charges journalières.

DEUXIÈME PARTIE: (10 points)

On considère les fonctions f et g définies sur l'intervalle [5 ; 70] par :

$$f(x) = \frac{840}{x} + 14$$
 et $g(x) = -0.7x + 70$

où f représente le montant des charges journalières d'un repas, g représente le prix de vente d'un repas et x le nombre de repas servis par jour.

Les représentations graphiques \mathscr{C}_f et \mathscr{C}_g de ces fonctions sont données en annexe 2.

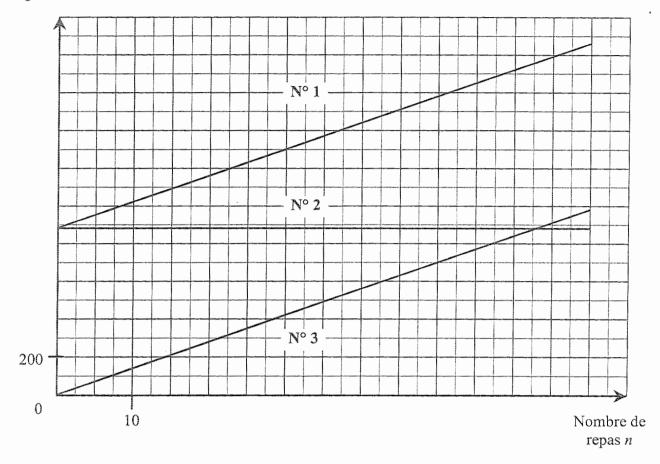
- 1. Déterminer graphiquement les valeurs de x pour lesquelles f(x) = g(x). Les traits de constructions nécessaires à la lecture devront figurer sur le schéma.
- 2. a) Montrer que l'équation $\frac{840}{x} + 14 = -0.7x + 70$ peut se mettre sous la forme : $-0.7x^2 + 56x 840 = 0$.
 - b) Résoudre cette équation sur l'intervalle [5; 70].
- 3. Déterminer graphiquement l'intervalle des valeurs x pour lequel f(x) < g(x).

TROISIÈME PARTIE: (1,5 points)

- 1. Combien de repas le restaurant doit-il servir pour qu'il soit rentable ?
- 2. Déterminer graphiquement la valeur du bénéfice maximal pour un repas à 0,5 € près. Les traits de constructions nécessaires à la lecture devront figurer sur le schéma.

ANNEXE 1 (À remettre avec la copie)

Charges en €

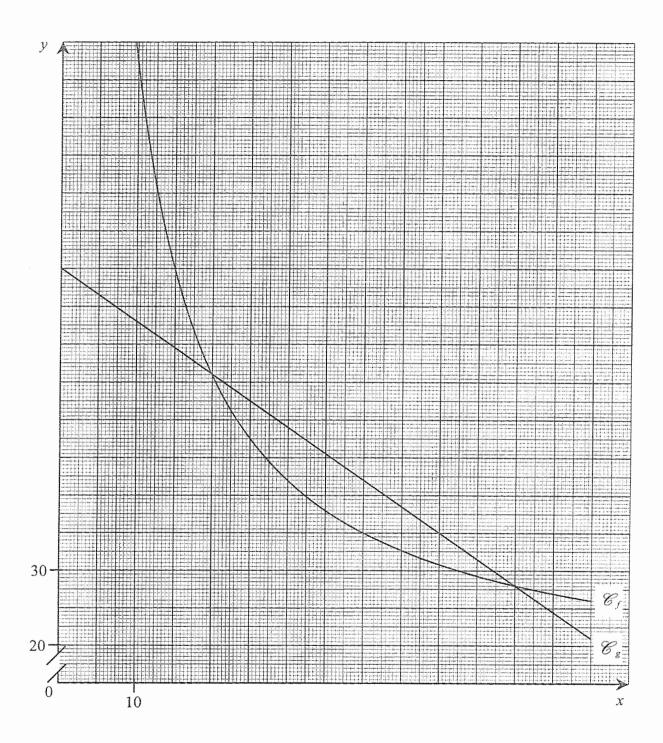


Première partie : exercice 1

Nature des charges	Nº de droite
Charges fixes	
Charges variables	
Total des charges (fixes + variables)	

Repère: RES EGM B Page 4/5

ANNEXE 2 (À remettre avec la copie)



FORMULAIRE DE MATHÉMATIQUES DU BACCALAURÉAT PROFESSIONNEL Secteur tertiaire

(Arrêté du 9 mai 1995 - BO spécial n°11 du 15 juin 1995)

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
<u>1</u>	_ 1
x	$-\frac{1}{x^2}$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Equation du second degré $ax^2 + bx + c = 0$ $\Delta = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1:u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1:u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$$

Exart type
$$\sigma = \sqrt{V}$$

Valeur acquise par une suite d'annuités constantes

 V_n : valeur acquise au moment du dernier versement

a: versement constant

t : taux par période

n : nombre de versements

$$V_n = a \, \frac{(1+t)^n - 1}{t}$$

Valeur actuelle d'une suite d'annuités constantes

 $\overline{V_0}$: valeur actuelle une période avant le premier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_0 = a \frac{1 - (1+t)^{-n}}{t}$$

Logarithme népérien : ln

(uniquement pour les sections ayant l'alinéa 3 du II)

$$\ln\left(ab\right) = \ln a + \ln b$$

$$\ln(a^n) = n \ln a$$

$$\ln (a/b) = \ln a - \ln b$$