GROUPEMENT INTERACADEMIQUE II

SESSION 2006

BEP OPTIQUE LUNETTERIE

EP3 OPTIQUE APPLIQUÉE

1^{re} partie : Optique géométrique

2^e partie : Optique graphique 3^e partie : Optique physiologique 4^e partie: Optique anatomique

L'unité internationale de vergence est le m⁻¹. Cette unité remplace la dioptrie (δ)

Les durées spécifiées pour chaque partie le sont à titre indicatif.

Les pages 5/8, 6/8, 7/8 et 8/8 sont à rendre avec la copie.

	Session		Facultatif : cod	e
GROUPEMENT INTERACADEMIQUE II		2006	06HL06	
Examen et spécialité				
BEP OPTIQUE LUNETTERIE			<u>.</u>	
Intitulé de l'épreuve				
EP3 – Optique Appliquée				
Type Facultatif: dat	e et heure	Durée	Coefficient	N° de page / total
SUIET		3h45	5	S 1/8

1^{RE} PARTIE

Optique géométrique (1 heure) – 15 pts

Exercice 1 Dioptres sphériques - Lentille épaisse

Soit une lunette de plongée composée d'un ménisque divergent, d'épaisseur au centre $\overline{S_1S_2}=3$ mm et de vergence $D=-3m^{-1}$. La vergence de la face avant est de $D_1=+3m^{-1}$. La face avant de la lentille est en contact avec de l'eau d'indice $n_1=1,33$. La face arrière est en contact avec l'air d'indice $n_2=1$. L'indice du verre est N=1,5.

- 1) Calculer les distances focales f_1 et f_1 du premier dioptre. (1 pt)
- 2) Déterminer la vergence du dioptre de sortie $D_{\!_2}$, les distances focales $f_{\!_2}$ et $f_{\!_2}^{'}$. (2 pts)
- 3) Les distances focales f et f' du système total (1pt)
- 4) Calculer $\overline{S_1H}$ et $\overline{S_2H'}$ ainsi que l'interstice $\overline{HH'}$. (2 pts)
- 5) Les puissances frontales objet et image. (2 pt)
- 6) Le facteur de forme arrière g'. (1 pt)

Exercice 2: MIROIR SPHÉRIQUE

Soit un miroir sphérique de rayon de courbure $\overline{SC} = 40cm$.

- 1) Calculer la position des foyers du miroir. (1 pt)
- 2) Placer sur le schéma n°1 les éléments cardinaux du miroir (S, C, F, F'). (1 pt)
- 3) Soit un objet virtuel (AB) de 1,5 cm de hauteur. Sachant que $\overline{SA'} = -50cm$ calculer la position de l'objet. (2 pts)
- 4) En déduire la taille de l'image. (1 pt)
- 5) Sur le schéma n°1 déterminer graphiquement l'image (A'B'). (1 pt)

EP3 – Optique Appliquée	2/8

2^e partie

OPTIQUE GRAPHIQUE Durée 1h15 – 25 points

Un œil myope de réfraction axiale principale $R = -10 \text{ m}^{-1}$. Cet œil est défini partiellement sur les feuilles de dessin.

On donne:

Le sommet de face antérieure de la cornée S₁

Le sommet de face postérieure du cristallin S₄

L'indice du corps vitré n₂=1,336

[H] et [H']: plans principaux

Le centre et le diamètre de la pupille de sortie Ps

Un objet (AB) et son image optique (A'B') à travers l'œil

Il est demandé une grande précision dans le tracé.

Document réponse vue n°1 page 8/8

1) Retrouver graphiquement la position du foyer objet de l'œil au repos F et la position du foyer image de l'œil au repos F'. Coter $\overline{H'F'}$.

En déduire la vergence de l'œil au repos D₀ (2 pts)

- 2) Placer le punctum rémotum de l'œil R et déterminer graphiquement le plan rétinien (1 pts)
- 3) Déterminer et coter la pseudo-image rétinienne de (AB). (2 pts)
- 4) Déterminer et coter le cercle de diffusion relatif à B. (2 pts)

Document réponse vue n°2 page 8/8

Le sujet doit observer, sans accommoder, le même objet (AB) à l'aide d'une loupe placée à 15 mm devant H.

- 1) Placer la loupe puis construire l'image intermédiaire (A₁B₁) de (AB) à travers la loupe. Construire l'image rétinienne (A'B') à travers l'œil. (4 pts).
- 2) Tracer la marche du faisceau utile issu de B traversant la loupe et l'œil. (4 pts)
- 3) Construire le foyer objet de la loupe F_P . Coter la distance focale objet $\overline{LF_P}$. En déduire la puissance intrinsèque de la loupe D_P . (3 pts)

Document réponse vue n°3 page 8/8

Le sujet rapproche la loupe de 6 mm vers son œil. Il observe le même objet (AB).

- 1) Constuire l'image intermédiaire (A₁B₁) de (AB) à travers la loupe. (2 pts)
- 2) Construire l'image (A'B') à travers l'œil. (2 pts)

	06HL06
BEP OPTIQUE LUNETTERIE	S 3/8
EP3 – Optique Appliquée	<u> </u>

3^E PARTIE

OPTIQUE PHYSIOLOGIQUE Durée 1h15 – 25 points

Le sujet comporte deux exercices indépendants.

Exercice 1

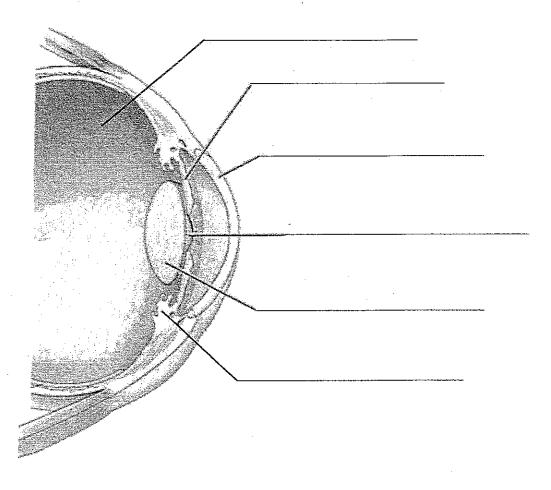
Les deux yeux d'un couple oculaire ont pour vergence $D_0 = +60 \text{ m}^{-1}$, les longueurs de l'œil sur l'axe antéro-postérieur sont respectivement de 26,50 mm pour l'œil droit et de 23,50 mm pour l'œil gauche. La position des plans principaux objet et image des deux yeux sont $\overline{SH} = 1,60 \text{ mm}$ et $\overline{SH'} = 1,90 \text{ mm}$. L'amplitude d'accommodation maximale de chaque œil est de +3,50 m⁻¹. On prend une valeur de 1 pour l'indice de l'air et 1,336 pour l'indice du corps vitré.

- 1) Quelles sont les amétropies OD et OG ? Justifiez votre réponse par le calcul. (3 pts)
- 2) Déterminez la réfraction axiale principale de l'œil droit. (2 pts)
- 3) Déterminez le parcours d'accommodation de cet œil nu. Le représenter et le coter. (3 pts)
- 4) Déterminez la vergence normalisée du verre compensant parfaitement l'œil droit en vision de loin, sachant que la distance verre-œil est de 14 mm. (2 pts)
- 5) Le sujet accommode de +1,00 m⁻¹. Quelle est la position de l'objet vu nettement par l'œil droit?
 - a) Lorsqu'il n'est pas compensé. (2 pt)
 - b) Lorsqu'il est compensé. (2 pt)

Exercice 2

Un sujet est parfaitement compensé pour la vision de loin, par un verre mince de vergence -2,00 (-3,00)₁₈₀ placé à 14 mm du plan principal objet H.

La vergence de l'œil au repos dans le méridien à 180° est D₁₈₀=+62 m⁻¹.


- On prendra une valeur de 1 pour l'indice de l'air et 1,336 pour l'indice du corps vitré.
- 1) Déterminez la réfraction axiale principale de l'œil dans le méridien à 180°. (2 pts)
 2) Déterminez la réfraction axiale principale de l'œil dans le méridien à 90°. (2 pts)
- 3) Définissez complètement, en justifiant votre réponse, l'amétropie de cet œil. (3 pts)
- 4) En déduire la vergence de l'œil au repos dans le méridien à 90°. (2 pts)
- 5) Le sujet regarde sans porter sa compensation un point objet éloigné. À l'aide d'un schéma de principe et sans faire de calculs, montrez comment le sujet verra ce point. (2 pts)

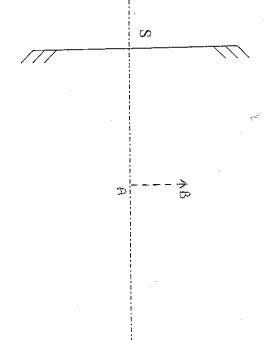
BEP OPTIQUE LUNETTERIE	06HL06
EP3 – Optique Appliquée	S 4/8

4^E PARTIE

OPTIQUE ANATOMIQUE Durée 0h15 – 15 points

1 - Complétez le schéma ci-dessous (6 pts)

BEP OPTIQUE LUNETTERIE	06HL06
EP3 – Optique Appliquée	S 5/8


2 - Cochez la bonne réponse (1 pt par bonne réponse) a) Un œil hypermétrope dont l'amplitude d'accommodation maximum est supérieure à sa réfraction axiale principale a un parcours d'accommodation lorsqu'il n'est pas compensé : - totalement virtuel - totalement réel - une partie virtuelle et une partie réelle b) Un œil astigmatisme mixte: - a un foyer image de part et d'autre de la rétine - a un foyer image sur la rétine et l'autre avant ou après - a ses deux foyers images du même côté que la rétine c) La papille: - est l'aboutissement du nerf optique sur la rétine - est constituée uniquement de cônes - est la zone de vision crépusculaire d) La pupille: - est située derrière le corps vitré - est de couleur variable (bleue, verte ...) - est un orifice rond qui laisse passer la lumière e) Le corps vitré se renouvelle : - toutes les dix minutes - toutes les heures - jamais f) La cornée fait partie de : - la choroïde - la sclérotique - la rétine g) Le rayon antérieur du cristallin mesure : - 7,8 mm - 6,5 mm - 10,2 mm h) Un œil emmétrope n'accommode jamais: - Vrai - Faux i) La cataracte: - est une opacification du cristallin - est une opacification de la cornée

BEP OPTIQUE LUNETTERIE	06HL06
	S 6/8
EP3 – Optique Appliquée	

- est une déchirure de la rétine

Schema n°1:

0.25

BEP OPTIQUE LUNETTERIE	06HL06
	S 7/8
EP3 – Optique Appliquée	<u> </u>

BEP OPTIQUE LUNE I TERIE EP3 – Optique Appliquée	Vac N° 2	Echelles: 10 2
90°H90	> w	
5, # #P _M 5 _A		φ Ξ Ψ α δ