SCIENCES (10 points)

Exercice 5: Chimie

(2 points)

Le chauffage au bois, même s'il est " écologique " provoque l'émission de dioxyde de carbone (CO₂) gaz responsable de l'effet de serre.

On donne ci-dessous un extrait de « la classification périodique des éléments » :

	Numéro atomic	que de l'élément					
H 1 g/mol hydrogène	Masse molaire atomique de l'élément		9 F ◆ 19 g/mol Fluor ◆		Symbole de l'élément Nom de l'élément		He 4 g/mol hélium
3	4	5	6	7	8	9	10
LI	Be	В	C	N	O	F	Ne
6,9 g/mol lithium	9,0 g/mol béryllium	10,8 g/mol fluor	12,0 g/mol carbone	14,0 g/mol azote	16,0 g/mol oxygène	19,0 g/mol fluor	20,1 g/mol néon
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	Р	S	Cl	Ar
23,0 g/mol sodium	24,3 g/mol magnésium	27,0 g/mol aluminium	28,1 g/mol silicium	31,0 g/mol phosphore	32,1 g/mol soufre	35,5 g/mol chlore	39,9 g/mol argon

1 - En utilisant ce document, compléter le tableau suivant :

Symbole de l'élément	Nom de l'élément	Masse molaire atomique (g/mol)
C		
0		

2 - Calculer, en g / mol, la masse molaire moléculaire M du dioxyde de carbone (CO_2).
--	-----------

CAP - Secteur 1

Épreuve: Mathématiques - Sciences

Page

7/11

Barème

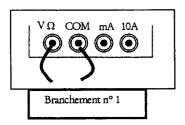
Exercice 6: Electricité (2,5 points)

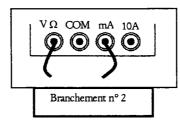
Sur la plaque signalétique de la pompe à eau qui sert à forcer la circulation d'eau dans la chaudière, on lit les indications suivantes :

230 V

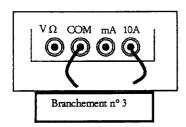
~

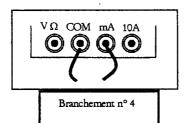
39 W


<u>0,17 A</u>

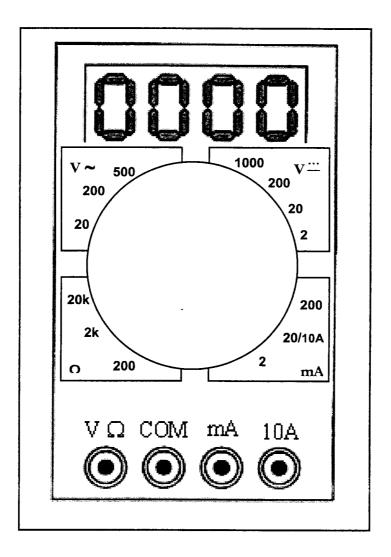

1315 tr/min

1 – Compléter le tableau suivant :


Grandeur	Intensité du courant électrique		Tension électrique	
Valeur indiquée		39		
Unité (en toutes lettres)		watt		


- 2 On souhaite vérifier la valeur efficace de la tension électrique aux bornes de l'alimentation du secteur EDF: 230 V ~.
 - 2.1 Nommer l'appareil permettant de mesurer une tension électrique.
 - 2.2 Parmi les quatre propositions ci-dessous, indiquer le numéro du branchement correct permettant la mesure de la tension électrique.

Le branchement correct est le branchement n°.....



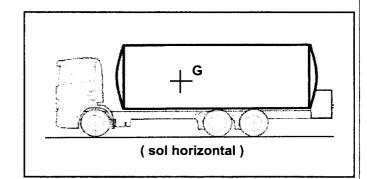
CAP - Secteur 1 Épreuve : Mathématiques - Sciences Page 8/11

2.3 – La figure ci-dessous représente un multimètre numérique possédant plusieurs calibres.

Sur cette figure, entourer le calibre adapté à la mesure de la tension du secteur : 230 V \sim .

Baréme

Exercice 7: Mécanique

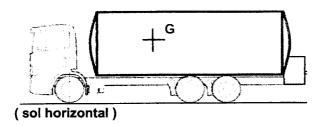

(3 points)

Le camion citerne souffleur qui livre les granulés a une masse m de 18 tonnes.

G est le centre de gravité du camion.

1 – Calculer, en N, la valeur P du poids du camion. Donner le détail des calculs.

On rappelle : $P = m \times g$ avec P en N m en kg g en N/kg.



On prendra 10 N/kg comme valeur approchée de g.

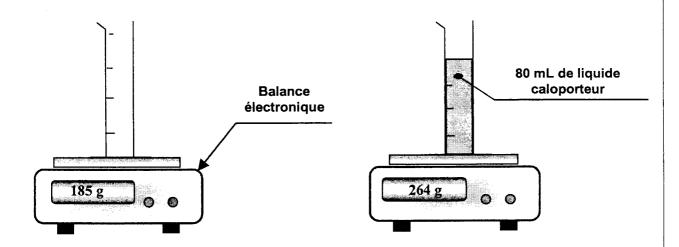
2 - Compléter le tableau des caractéristiques du poids.

action mécanique	Point d'application	Direction	Sens	Valeur (en N)	Force
poids				180000	\vec{P}

3 – Représenter la force \vec{P} correspondant au poids du camion sur la figure ci-dessous. <u>Unité graphique</u>: 1 cm représente 40000 N

Barème

Exercice 8: Masse volumique d'un liquide


(2,5 points)

Le liquide caloporteur est le liquide qui circule dans le circuit de chauffage (chaudière, tuyaux et radiateurs).

On veut déterminer la masse volumique de ce liquide . Pour cela, on réalise expérimentalement deux mesures :

<u>1^{ère} mesure</u> : masse de l'éprouvette vide.

2ème mesure : masse de l'éprouvette contenant 100 mL de liquide caloporteur.

1-A partir des informations données ci-dessus, déterminer, en g, la masse m de 80 mL de liquide caloporteur.

2 – Sachant que 1 L = 1 000 mL, calculer, en kg/L, la masse volumique ρ du liquide caloporteur.

On donne la relation : $\rho = \frac{\mathbf{m}}{\mathbf{V}}$

avec

 ρ : la masse volumique en kg/L.

si m: la masse en kg. V: le volume en L.

3 – La masse volumique de l'eau a, selon les conditions, une valeur ρ voisine de 1 kg/L. Peut-on considérer que le liquide caloporteur est de l'eau? Justifier la réponse.