CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

SCIENCES (10 points)

Exercice 5: Chimie

(2 points)

Le chauffage au bois, même s'il est " écologique " provoque l'émission de dioxyde de carbone (CO₂) gaz responsable de l'effet de serre.

On donne ci-dessous un extrait de « la classification périodique des éléments » :

<u> </u>	Numéro atomi	que de l'élément					
H 1 g/mol hydrogène	Masse molaire atomique de l'élément		9 F ← 19 g/mol Fluor ←		Symbole de l'élément Nom de l'élément		He 4 g/mol hélium
3	4	5	6	7	8	9	10
Li	Be	В	C	N	0	F	Ne
6,9 g/mol	9,0 g/mol béryllium	10,8 g/mol fluor	12,0 g/mol carbone	14,0 g/mol azote	16,0 g/mol oxygène	19,0 g/mol fluor	20,1 g/mol néon
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
23,0 g/mol sodium	24,3 g/mol magnésium	27,0 g/mol aluminium	28,1 g/mol silicium	31,0 g/mol phosphore	32,1 g/mol soufre	35,5 g/mol chlore	39,9 g/mol argon

1 - En utilisant ce document, compléter le tableau suivant :

Symbole de l'élément	Nom de l'élément	Masse molaire atomique (g/mol)
С	Carhone	12,0
0	Otygene	16,0

2 – Calculer, en g / mol , la masse molaire moléculaire M du dioxyde de carbone (CO2).

Exercice 6: Electricité (2,5

(2,5 points)

Sur la plaque signalétique de la pompe à eau qui sert à forcer la circulation d'eau dans la chaudière, on lit les indications suivantes :

230 V

~

39 W

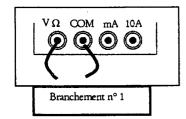
0,17 A

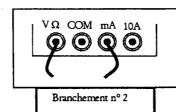
1315 tr/min

1 – Compléter le tableau suivant :

Grandeur	Intensité du courant électrique	Pumance	Tension électrique	
Valeur indiquée	0,17(A)	39	230(y)	
Unité (en toutes lettres)	Ampère	watt	Volt	

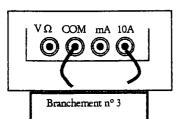
125

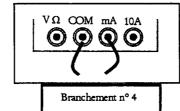

2 – On souhaite vérifier la valeur efficace de la tension électrique aux bornes de l'alimentation du secteur EDF: 230 V ~.


2.1 – Nommer l'appareil permettant de mesurer une tension électrique.

Voltmine

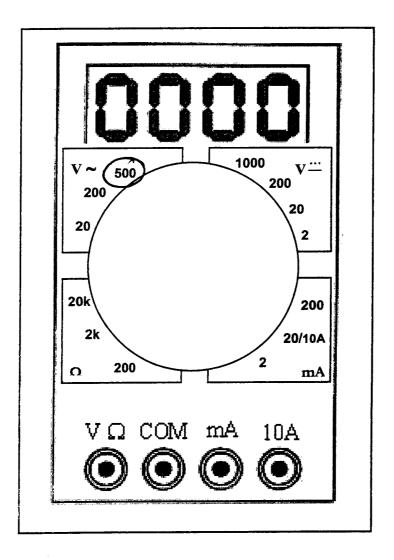
0,25


2.2 – Parmi les quatre propositions ci-dessous, indiquer le numéro du branchement correct permettant la mesure de la tension électrique.



Le branchement correct est le branchement n°.......

0,5

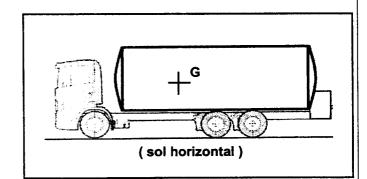


CAP - Secteur 1 Épreuve : Mathématiques - Sciences Page C - 8/10

2.3 – La figure ci-dessous représente un multimètre numérique possédant plusieurs calibres.

Sur cette figure, entourer le calibre adapté à la mesure de la tension du secteur : 230 V \sim .

0,5

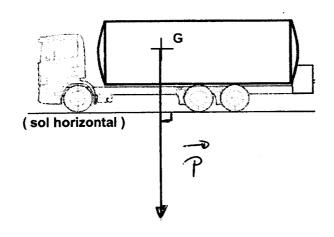

Mécanique Exercice 7:

(3 points)

Le camion citerne souffleur qui livre les granulés a une masse m de 18 tonnes.

G est le centre de gravité du camion.

1 – Calculer, en N, la valeur P du poids du camion. Donner le détail des calculs. On rappelle: $P = m \times g$ avec P en Nm en kg g en N/kg.


On prendra 10 N/kg comme valeur approchée de g.

P=m,1g = P = 18000 kg x 10 Mg, = 180000 N P=180000 N

2 - Compléter le tableau des caractéristiques du poids.

action mécanique	Point d'application	Direction	Sens	Valeur (en N)	Force
poids	G	(verticale)	4	180000	P

3 – Représenter la force \vec{P} correspondant au poids du camion sur la figure ci-dessous. Unité graphique: 1 cm représente 40000 N

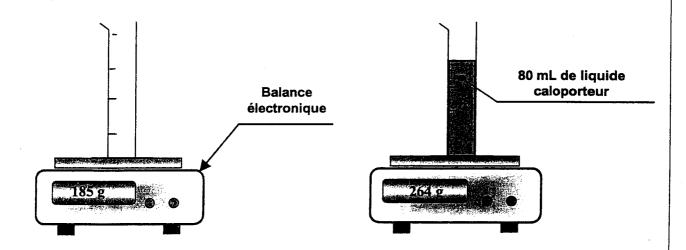
ventin la papen dicularte!

et 4,5 cm.

0,75

1,25

Masse volumique d'un liquide Exercice 8:


(2,5 points)

Le liquide caloporteur est le liquide qui circule dans le circuit de chauffage (chaudière, tuyaux et radiateurs).

On veut déterminer la masse volumique de ce liquide . Pour cela, on réalise expérimentalement deux mesures:

<u>1^{ère} mesure</u>: masse de l'éprouvette vide.

2^{ème} mesure: masse de l'éprouvette contenant 100 mL de liquide caloporteur.

1 – A partir des informations données ci-dessus, déterminer, en g, la masse m de 80 mL de liquide caloporteur.

m = 264g - 185g = 79g m = 79g

2 – Sachant que 1 L = 1 000 mL, calculer, en kg/L, la masse volumique ρ du liquide caloporteur.

On donne la relation : $\rho = \frac{\mathbf{m}}{\mathbf{v}}$

avec ρ : la masse volumique en kg/L.

m: la masse en kg.

V: le volume en L.

 $e = \frac{0.07919}{0.08L} = 0.9875 \text{ ho}_{L}$

3 – La masse volumique de l'eau a, selon les conditions, une valeur ρ voisine de 1 kg/L. Peut-on considérer que le liquide caloporteur est de l'eau? Justifier la réponse.

la pent considéra qu'il régit bien d'éau ear 0,9875 kj/2 ~ 1 ks/2

1