

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

DTS Imagerie Médicale et Radiologie Thérapeutique

Épreuve: PHYSIQUE

SESSION 2007

CORRECTION

PREMIERE PARTIE : CONTROLE DE CONNAISSANCES (30 points)

Q1. QUESTIONNAIRE A CHOIX MULTIPLES (12points)

BAREME

Question N°	a)	b)	c)	d)
1	F	F	V	V
2	F	V	F	V
. 3	F	F	V	V
4	F	F	V	F
5	F	V	V	F
6	F	V	F	V
7	F	F	V	V
8.1	F	F	V	V
8.2	V	F	V	F
8.3	V	F	V	V

0,3 point par bonne réponse

Sous total

12 points

Q2. EXAMEN RADIOLOGIQUE ET EXAMEN ECHOGRAPHIQUE (18 points)		
I- Examen radiologique	BAREME	
I.1. Rayonnement de freinage. Le fond continu est dû au freinage des électrons au voisinage des noyaux des atomes de la cible.		
I.2. La production de photons d'énergie discrète provient de l'interaction entre un électron incident et un atome du milieu. L'électron incident peut ioniser ou exciter un atome du milieu; ce dernier émet alors des photons d'énergie quantifiée lors de son retour à l'état fondamental		
I.3. Ces notations indiquent des transitions électroniques : $L_{\alpha}: transition \ M \ vers \ L, \ L_{\beta}: transition \ de \ N \ vers \ L, \\ K_{\alpha}: transition \ de \ L \ vers \ K \ et \ K_{\beta} \ transition \ de \ M \ vers \ K$	2 points 1 point	
$I.4. E_{max} = e \times U$		
I.5. $\lambda_{\min} = \frac{\text{hc}}{E_{\max}} = \frac{\text{hc}}{\text{eU}} = \frac{6.62.10^{-34}.3.10^8}{1.6.10^{-19}.75.10^3} = 1.7.10^{-11} \text{ m}$	1 point	
I.6. $E = \frac{hc}{\lambda} = \frac{hc}{1,5.\lambda_{min}} = \frac{E_{max}}{1,5} = 50 \text{ keV}$	1 point	
I.7. $\frac{N}{N_0} = e^{-\mu x} = e^{-0.233 \times 2} = 0.63 = 63 \%$	1 point	
I.8. $\frac{N}{N_0} = e^{-\mu x} = e^{-0.527 \times 3} = 0.206 = 21 \%$	1 point	
I.9. $C = \frac{e^{-\mu mx} - e^{-\mu osx}}{e^{-\mu mx} + e^{-\mu osx}} = 0,50$	1 point	
I.10. Contraste suffisant pour exploiter l'image.	1 point	
II. EXAMEN ECHOGRAPHIQUE		
II.1. $Z_{\rm m} = \rho_{\rm m} \times c_{\rm m} = 1,04.10^3 \times 1580 = 1,64.10^6 \text{ kg.m}^{-2}.\text{s}^{-1} \text{ (Rayl)}$ $Z_{\rm os} = \rho_{\rm os} \times c_{\rm os} = 1,65.10^3 \times 4000 = 6,60.10^6 \text{ Rayl}$	1 point	
$Z_{os} = \rho_{os} \times c_{os} = 1,65.10^{3} \times 4000 = 6,60.10^{6} \text{ Rayl}$ $II.2. \ \alpha_{r} = \frac{(Z_{1} - Z_{2})^{2}}{(Z_{1} + Z_{2})^{2}} = \frac{(1,64 - 6,60)^{2}}{(1,64 + 6,60)^{2}} = 0,36 = 36\%$ $\alpha_{t} = 64\%$	1 point	
II.3. Les us parcourent 4 cm dans le muscle soit : $t = \frac{d}{c_m} = \frac{4.10^{-2}}{1580} = 2,5.10^{-5} \text{ s} = 25 \mu\text{s}$		
II.4. $I_{\text{incident interface}} = I_0 \cdot e^{-\mu_m x}$, $I_{\text{écho}} = \alpha_r \cdot I_{\text{incident}}$ et $I_{\text{reçu}} = I_{\text{écho}} \cdot e^{-\mu_m x}$ $I_{\text{reçu}} = \alpha_r I_0 e^{-2\mu_m x} \text{ avec } x=2 \text{ cm, soit } \frac{I_{\text{reçu}}}{I_0} = 12,5\%$	2 points	

Sous total 18 points

DEUXIEME PARTIE: PROBLEME (30 points)

I- RADIOTHERAPIE METABOLIQUE DES METASTASES OSSEUSES (13 pts)	BAREME	
I.1. Lois de Soddy : conservation du nombre de nucléons A, des charges électriques, de		
l'énergie et de la quantité de mouvement		
I.2.1. ${}^{89}_{38}\text{Sr} \rightarrow {}^{89}_{39}\text{Y} + {}^{0}_{1}\text{e} + {}^{0}_{0}\overline{\text{V}}$	1 point	
$1.2.2. {}^{153}_{62}\text{Sm} \rightarrow {}^{153}_{63}\text{Eu} + {}^{0}_{1}\text{e} + {}^{0}_{0}\overline{\text{v}} + {}^{0}_{0}\gamma$	1 point	
I.3. 1. $E_{lib1} = E_{réactifs} - E_{produits} = E_{Sr} - E_{Y} - E_{e-} = (88,889606-88,884476-0,000548) \times 931,5$ = 4,27 MeV	1,5 point	
I.3.2. $E_{lib2} = E_{réactifs} - E_{produits} = E_{Sm} - E_{Eu} - E_{e}$ = $(152,887604-152886702-0,000548) \times 931,5$ = $0,330 \text{ MeV} = 330 \text{ keV}$	1,5 point	
I.4.1. Lors de la désintégration, le noyau fils est dans un état excité instable. Le retour à son état fondamental s'effectue par émission d'un photon γ.		
I.4.2. D'après le principe de conservation de l'énergie : $E_{lib} = E_{e-} + E_{antineutrino} + E_{\gamma}$ Dans le cas limite $E_{e-} = E_{lib} - 0 - E_{\gamma} = 330 - 103 = 227 \text{ keV}$		
I.4.3. Ionisation et excitation des atomes du milieu	1 point	
I.4.4.a. TEL = $\frac{E}{R}$ = 40 keV.mm ⁻¹	1 point	
I.4.4.b. $I_t = \frac{E}{\varpi} = 6,1.10^3$ ionisations	1 point	
\overline{U} I.4.4.c. $I_S = \frac{I_t}{R} = 1,2.10^3$ ionisations.mm ⁻¹	1 point	
II- SCINTIGRAPHIE OSSEUSE (5 pts)		
II.1. $x = \frac{1}{\mu} \ln \frac{N_0}{N} = \frac{1}{6.93.10^3} \ln \frac{100}{1} = 6,6.10^{-4} \text{ m} = 0,66 \text{ mm}$	2 points	
II.2. $t = \frac{1}{\lambda} \ln \frac{A_0}{A} = \frac{46}{\ln 2} \ln \frac{20}{3} = 126 \text{ h} = 5 \text{ jours et 6 heures}$	1 point	
II.3. Dose nécessaire d'activité $A = 7 \times 370 = 2590 \text{ MBq}$ $V = \frac{2590 \times 15}{20.10^3} = 1,94 \text{ mL}$	2 points	
III- DETECTION DES PHOTONS AVEC UNE GAMMA-CAMERA (12 pts)		
III.1. Scintillateur à iodure de sodium NaI dopé au Thallium		
III.1.1. Z en ordonnée et E en MeV en abscisse (annexe page 8).	1 point	
III.1.2. D'après le graphique pour Z=50 et E = 0,10 MeV : effet photoélectrique prédominant	1 point	
III.1.3. Décrire les effets photoélectrique, Compton et création de paires. Cours	4,5 points	
III.1.4. $\lambda = \frac{hc}{\Delta E} = \frac{6.62.10^{-34}.3.10^8}{3.1.6.10^{-19}} = 414 \text{ nm}$	1,5 point	
Ce photon appartient au domaine visible (proche UV)		
III.2. Photomultiplicateur		
III.2.1. Ne _A = $\frac{24 \cdot 10^{-3}}{1,6 \cdot 10^{-19}} = 1,50 \cdot 10^{17}$ électrons par seconde	1 point	
III.2.2. Ne _p = $\frac{\text{Ne}_{A}}{5^{10}}$ = 1,54·10 ¹⁰ électrons par seconde	1 point	
III.2.3. $Ne_p = 0.2 \cdot Np_p$ soit $Np_p = 7.68 \cdot 10^{10}$ photons par seconde	1 point	
III.2.4. Chaque photon possède une énergie de 3 eV, la puissance est 36,9 nW	1 point	