CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

MINISTÈRE DE L'ÉDUCATION NATIONALE

BACCALAURÉAT PROFESSIONNEL CARROSSERIE

Options:

1

Construction et Réparation

Session: 2007

E. 1- ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

UNITÉ CERTIFICATIVE U11

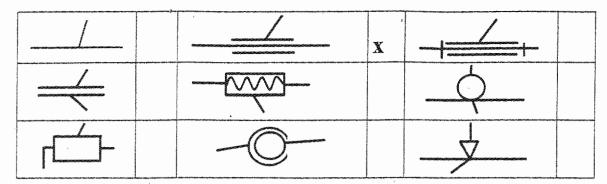
Étude fonctionnelle et structurelle d'un produit de carrosserie

Durée : 4h

Coef.: 2

DOSSIER CORRIGÉ BARÈME

Ce dossier corrigé - barème comprend 14 pages numérotées de 1/14 à 14/14


Bac Pro Carrosserie

ANALYSE DES LIAISONS

Objectif: déterminer les liaisons entre les différentes parties du système étudié, pour vérifier les solutions technologiques utilisées. L'une de ces solutions fera l'objet d'une étude gritique plus approfondie Hypothèses: Tous les mouvements sont co Les frottements sont négligés. Utiliser les documents DTR 2/9, DTR 5/9, DTR 6/9, DTR 7/9. 1.1 Donner la nature de la liaison entre le cylindre du vérin 1 et le châssis 0 : Liaison pivot d'axe Fz 1.2 Compléter le tableau des degrés de liberté concernant cette liaison vérin 1 / châssis 0 : (Noter 0 si le mouvement est impossible et 1 si le mouvement est possible) 0 Ox0 Ov 0 0z 1.3 Indiquer par une croix dans le tableau la représentation schématisée de la liaison : X 1.4 Indiquer la solution technologique utilisée : Vis H M10 Ecrou frein H M10 Chape 6 2.1 Donner la nature de la liaison entre le piston 5 et le cylindre 1 : Liaison pivot glissant d'axe: l'axe du cylindre (direction y) 2.2 Compléter le tableau des degrés de liberté concernant cette liaison piston 5/ cylindre 1:

	R	T
Ox	0	. 0
Oy	I	1
Oz	0	0

2.3 Indiquer par une croix dans le tableau la représentation schématisée de la liaison :

3.1 Donner la nature de la liaison entre la chape 6 du vérin et le châssis 0 :

Encastrement

3.2 Compléter le tableau des degrés de liberté concernant cette liaison chape 6 / châssis 0.

	R	T
Ox	0	0
Oy	0	0
Oz	0	. 0

3.3 Indiquer par une croix dans le tableau la représentation schématisée de la liaison :

	X		+==+	
		-m-	\	
The state of the s	And the state of t	-0-	一	

3.4 Indiquer la solution technologique utilisée :

Soudage	

07-06 CAR STA

CINÉMATIQUE GRAPHIQUE

Objectif 1: déterminer dans le mouvement plan Piston 5 / Châssis 0 la vitesse instantanée de sortie du piston (\$\phi\$110) pour choisir un vérin mieux adapté.

1 Loi de composition des vecteurs viter e. Les constructions se feront sur la fig 1 du document DR 4/13.

1.1 Tracer la trajectoire du point I appartenant au cylindre du vérin par rapport au châssis. Cette trajectoire est notée T I Cylindre 1 / Châssis 0.

1.2 Tracer la trajectoire du point I appartenant au piston par rapport au cylindre. Cette trajectoire est notée T I Piston 5 / Cylindre 1.

1.3 Ecrire la loi de composition des vitesses au point I:

$$\overrightarrow{V_{I_{5/0}}} = \overrightarrow{V_{I_{5/1}}} + \overrightarrow{V_{I_{1/0}}}$$

1.4 Tracer le support de VI 1/0

1.5 Tracer le support de VI 5/1

1.6 On donne $\|VI_{5/0}\| = 460 \text{ mm} / \text{min Déterminer graphiquement } \overline{VI_{5/1}} \text{ et } \overline{VI_{1/0}}$ $\|\overline{VI_{5/1}}\| = 315 \text{ mm} / \text{min}$ $\|\overline{VI_{1/0}}\| = 340 \text{ mm} / \text{min}$

Objectif 2 modifier le système existant pour le rendre plus performant : changer le vérin et le réservoir d'huile qui l'alimente. (On garde la même pompe d'alimentation manuelle et donc le même débit). Le piston proposé de \$\phi\$ 110 mm (voir DTR 5/9) s'élève à une vitesse moyenne de 31,5 cm / min. Il lui faut donc ≈ 1 min et 40 secondes pour lever la benne à son maximum. On souhaite abaisser ce temps à 1 minute.

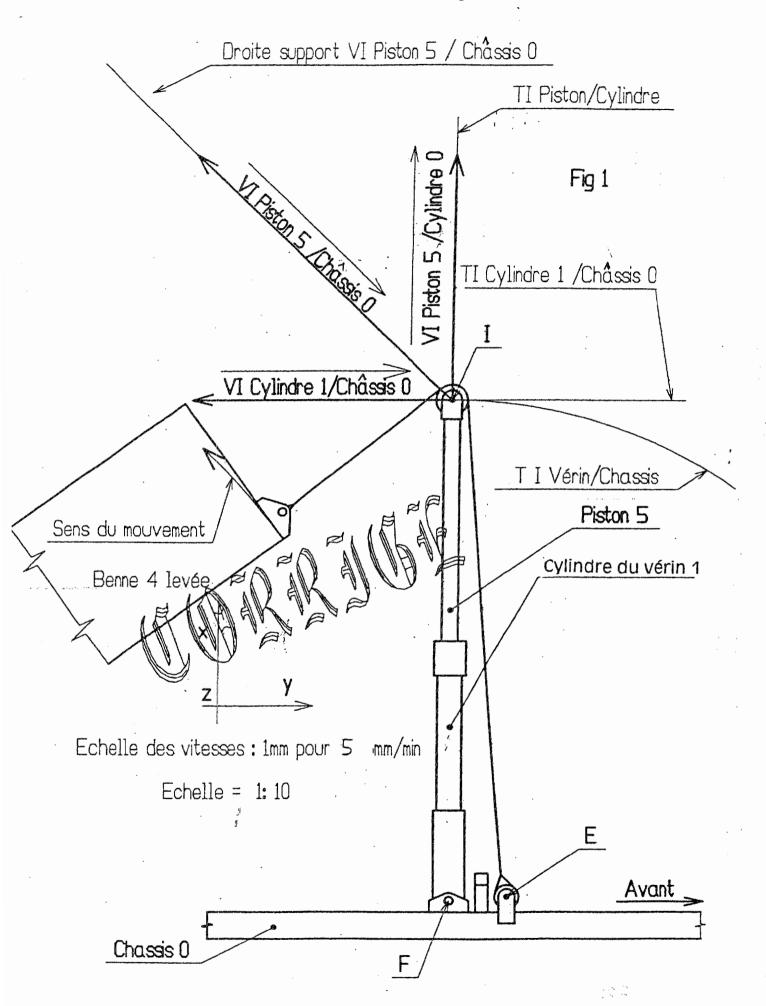
On donne la vitesse de sortie du vérin : 53 cm / min (course en 1 min). On demande de chercher le diamètre du vérin nécessaire dans ce cas.

Pour cela:

2.1 Calculer le débit de la pompe en 1 minute (voir DTR 5/9 et DTR8/9) : $D\acute{e}bit = nombre \ de \ coups \ x \ volume$ $D\acute{e}bit = 10 \ x \ 300 = 3000 \ cm^3$

2.2 Calculer le diamètre du nouveau vérin (voir DTR 1/9).

$$Q = S \times V$$
 donc $S = Q/V = 3000 / 53 = 56,6 \text{ cm}^2$


$$d = \sqrt{4 \text{ S/}\pi}$$
 $d = 8,489 \text{ cm}$ $d \approx 8,5 \text{ cm}$

2.3 Calculer le nouveau volume d'huile nécessaire au fonctionnement de la partie hydraulique (volume de remplissage). Prendre comme diamètre du nouveau vérin 8,5 cm et course 530 mm.

V = Volume du vérin + Volume de la pompe + volume de réserve (voir DTR 1/9 DTR 5/9 DTR 8/9)

Volume du vérin : Sx course = $(\pi d^2/4)x$ 53 = $\pi 8.5^2/4x$ 53 = 3007.48 cm³ Volume pompe = 300 cm³ Volume réserve 700 cm³ Volume total = 3007 + 300 + 700 = 4007 cm³

Volume du réservoir ≈ 4 litres

BACCALAURÉAT PROFESSIONNEL CARROSSERIE – SESSION 2007 – ÉPREUVE U11 - PAGE 4/14
07-06 CAR STA

ÉTUDE STATIQUE

Objectif: on souhaite vérifier la résistance du eâble à la traction, puis connaître l'effort exercé par le vérin sur son axe au niveau de la liaison F afin de vérifier sa résistance au cisaillement.

Hypothèses:

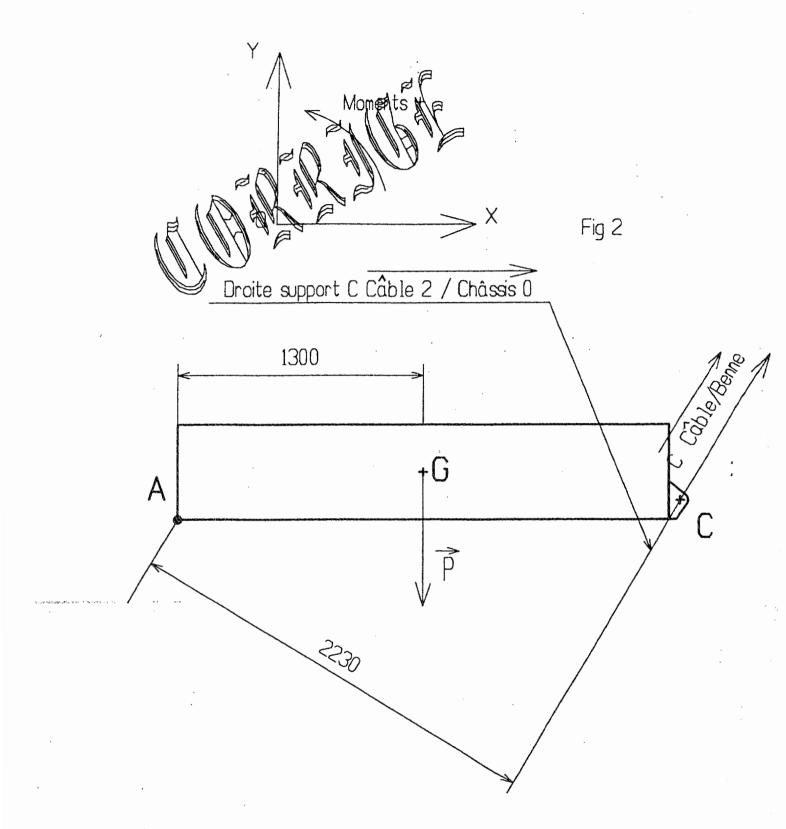
- * Les efforts sont contenus dans le plan de * Les liaisons sont parfaites et sans frottement.
- * Le poids propre de chaque pièce est négligé, sauf celui de la benne et de son chargement qui sera représenté par un vecteur force appliqué en son centre de gravité G.
- * Le câble est supposé constitué d'un seul brin de section « ronde ».

Etude de la benne au décollage (fig. 2) : (voir DTR 2/9 et DTR 6/9)

- On isole le vérin $\{1+5\}$, (voir document DR 8/13):
- 1.1 Faire le bilan des forces extérieures dans le tableau ci-dessous :

	VERIN	[{ <u>1</u> +5}]	
Action (Force)	Point Application	Direction + Sens	Module (Intensité)
D 2 / 1	D	F	. ?
F 6/1	F	F D	?

- 1.2 Tracer sur la fig. 4 (DR 8/13) les droites support des efforts sur le vérin.
- 2.. On isole la benne 4 fig. 2 (DR 6/13):
- 2.1 Calculer le poids maximal soulevé (voir DTR: 1/9 et DTR 2/9):


$$P = m \times g$$
 $P = 1000 \times 9.81 = 9810 N$

$$P = 981 \, daN$$

2.2 Faire le bilan des forces extérieures dans le tableau ci-dessous

	BENN	F {4}	The state of the s
Action (Force)	Point Application	Direction + Sens	Module (Intensité)
P	G	↓	981 daN
$\overrightarrow{A_{0/4}}$	A	? .	?
C _{2/4}	C	/ ^D	?
::		. ć	

2.3 Tracer le vecteur poids sur la fig : 2 page DR 6/13.

Benne 1 isolée (les forces ne seront pas représentées à l'échelle)

Echelle des longueurs = 1:20

3 Calcul de l'effort fourni par le câble 2 sur la benne 4.

3.1 Enoncer le Principe Fondament; de la Statique :

$$\Sigma \overrightarrow{Fext} \rightarrow 4 = 0$$

$$\Sigma MI Fext \rightarrow 4 = 0$$

3.2 <u>Déterminer l'intensité de C Cable 2/Benne 4 en calculant les moments par rapport au point A</u>: (Tracer et mesurer les cotes des longueurs permettant ce calcul sur DR 6/13).

$$\overrightarrow{MAA0/4} + \overrightarrow{MAC2/4} + \overrightarrow{MAP} = 0$$

En projection sur
$$Az = 0$$

$$0 - (Px 1300) + (C2/4x 2230) = 0$$

$$C2/4 = P \times 1300/2230 = 571.88$$

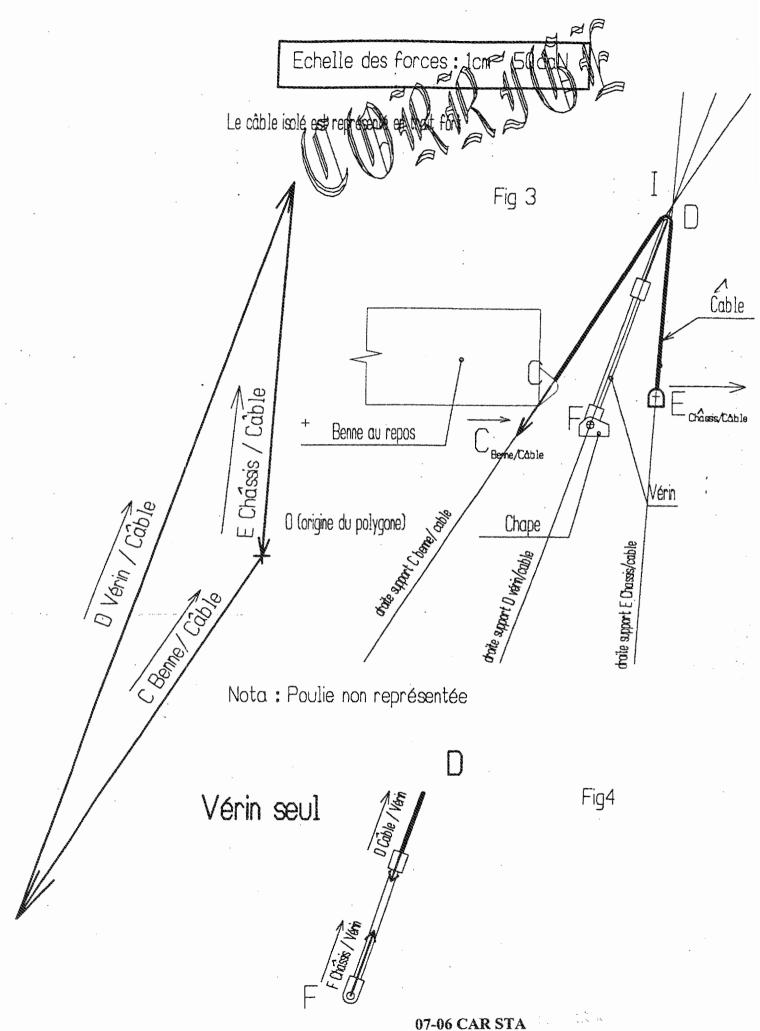
Résultats:

4 Etude de l'équilibre du câble (Benne en position horizontale) voit DTR 6/9 :

4.1. Complèter le tableau ci-dessous. (Faire le bilan des forces extérieures agissant sur du câble) (Pour cette étude on prendra $C_{4/2} = 572$ daN)

	CABL	E isolé	
Action (Force)	Point Application	Direction + Sens	Module (Intensité)
$\overline{C_{4/2}}$	C	c D	572 daN
$\overline{D_{1/2}}$	D	_F / ^D	?
E _{0/1}	E	Δ	?

4.2. Enoncer les conditions d'équilibre :


Solide en équilibre sous l'action de trois forces extérieures coplanaires et concourantes. Les trois forces sont concourants en un même point Γ le polygone des forces est fermé.

4.3. Déterminer graphiquement l'effort du vérin sur le câble (faire le tracé sur fig. 3 page DR 8/13).

Résultat:

$$D_{V\acute{e}rin\ 1/C\acute{a}ble\ 2} = 1025$$
 daN

4.4 Tracer sur le dessin du vérin isolé fig : 4 (DR 8/13) les efforts subits (sans tenir compte de l'échelle).

ÉTUDE DE RÉSISTANCE DES MATÉRIAUX

1. Objectif Vérifier la résistance de l'axe du pied de vérin et comparer les deux montages (montage 1, montage 2) fig. 5 fig. et 6 OR 10/13). La liaison de pied de vérin est assurée par une articulation en chape.

Montage Nol.: montage secon se flet de 10 S 725 h) fig. 5.

Montage N 2. : montage avec une vis de \$ 10. (Noyau 3,3 mm²) fig. 6 cas proposé sur le DTR 7/9.

DONNÉES

Pour ce calcul, on prendra l'effort maximum fourni par le vérin est de 1025 daN. L'axe a un diamètre φ 10 mm et une Résistance à la traction Re = 700 MPa Le coefficient de sécurité adopté est de 5

- 1.1 Entourer sur les deux montages (fig 5 et 6 DR 10/1") la ou les section(s) cisaillée(s).
- 1.2 Calculer la surface minimale qui supporte la contrainte de cisaillement et comparer les sections cisaillées dans les deux cas de montage.

 $T/S \le Rpg$ avec Rrg = Rre/2 soit 700/2 = 350 Mpa

avec Rpg = Rrg/s soit 350/5 = 70 Mpa

 $S \ge T / Rpg$ $S \ge 10250 / 70$ $S \ge 146.42 \text{ mm}^2$

cas 1 : 2 sections cisaillées $S = 78.5 \text{ x2} = 157 \text{ mm}^2$

cas 2: 2 sections cisaillées $S = 78.5 + 52.3 = 130.8 \text{ mm}^2$

1.3 Quelle solution retiendrez vous pour votre montage? Justifier votre choix.

Choisir le cas N° 1 S doit être supérieure à 146,42 mm²

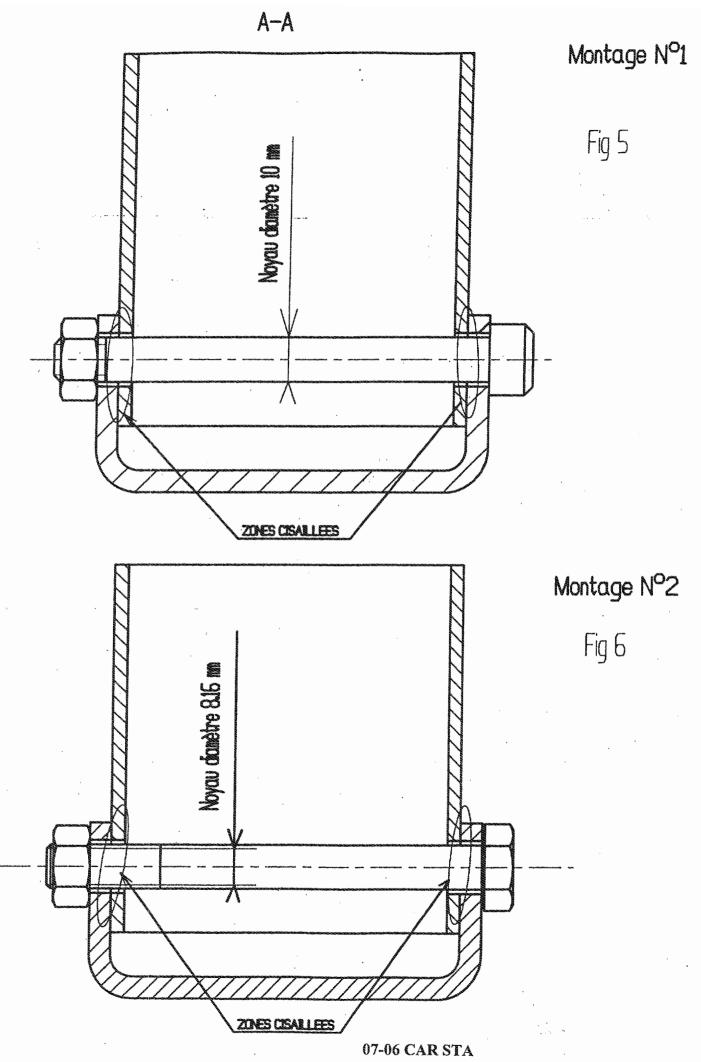
2. Objectif: Vérifier si le diamètre du câble est correctement dimensionné.

Nota: le câble (φ8 mm) est en acier, sa résistance limite à la traction Re = 360 Mpa. Le coefficient de sécurité adopté est de 5

2.1 A quelle sollicitation est soumis le câble?

Traction

2.2 Vérifier l'effort Maximal que peut fournir le câble (voir DTR 7/13).


 $\sigma \max = N/S \le Rpe \ avec \ Rpe = Rre/s = 360/5 = 72 \ Mpa$

 $S = \pi d^2/4 = \pi x 8^2/4 = 50,26 \text{ mm}^2$

 $N/S \le Rre/s$ $N \le S \times Rre/s = 50,26 \times 72 = 3618,7$ N = 3618,7 N =

Conclusion: Le câble n'est pas suffisamment résistant (il devrait pouvoir supporter 5720 N Solution proposée: Changer le diamètre du câble ou sa résistance

BACCALAURÉAT PROFESSIONNEL CARROSSERIE - SESSION 2007 - ÉPREUVE U11 - PAGE 9/14

BACCALAURÉAT PROFESSIONNEL CARROSSERIE - SESSION 2007 - ÉPREUVE U11 - PAGE 10/14

ETUDE FONCTIONNELLE

Objectif: Réaliser le montage du pied de vérin (voir DTR page 5/10 et DR page 10/15)

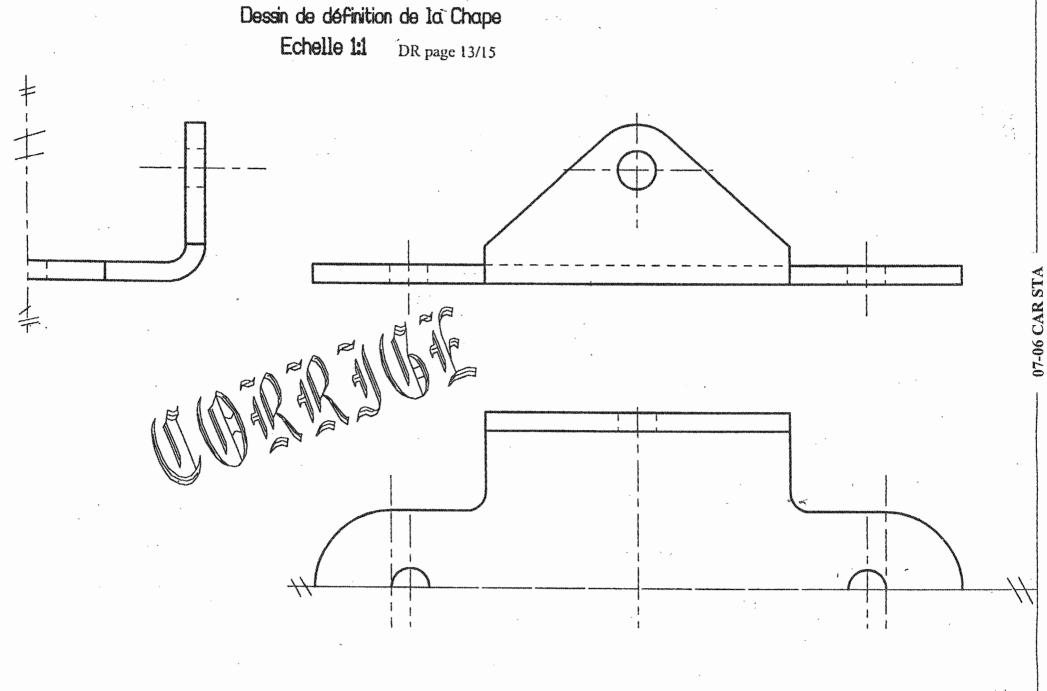
Ayant réalisé la chape, vous devez remonter ce système et pour que le filetage ne soit pas cisaillé, il vous faut respecter la condition \overline{JA}

1. Etablir la chaîne de cotes relative à la cote condition Ja sur la fig 7

2 Earie l'équation relative à la chaîne de cotes. Fig 7 JA 6 JA 8

BACCALAURÉAT PROFESSIONNEL CARROSSERIE - SESSION 2007 - ÉPREUVE U11 - PAGE 11/14

07-06 CAR STA


ÉTUDE GRAPHIQUE

La chape 6 servant à la liaison entre le pied du vérin et le timon (voir DTR 6/9 et DTR 7/9) est détériorée. Vous devez donc la changer et la remplacer par une nouvelle, définie par le dessin DTR 9/9. Cette nouvelle chape est fabriquée par pliage, à partir d'un brut découpé dans de la tôle d'épaisseur 5 mm. Les rayons de pliage intérieurs seront de 5 mm.

Objectif: réaliser le dessin de définition et le développé d'une pièce obtenue par pliage.

Sur la page DR: 13/13

- 1 Représenter la pièce correspondant à la perspective à l'échelle 1:1 en projections orthogonales
- 1.1 Vue de face
- 1.2 Demi vue de dessus
- 1.3 Demi vue de droite

BARÈME (Total / 200)

(à titre indicatif)

ANALYSE DES LIAISONS (Pages 1/13 et 2/13)	/ 40
CINÉMATIQUE GRAPHIQUE (Pages 3/13 et 4/13)	/ 40
STATIQUE (Page 5/13 à 8/13)	/ 40
RÉSISTANCE DE MATÉRIAUX (Pages 9/13 et 10/13)	/ 25
ÉTUDE FONCTIONNELLE (Page 11/13)	/ 10
ÉTUDE GRAPHIQUE (Pages 12/13 et 13/13)	/ 45