### BT AGENCEMENT

## ÉPREUVE DE MÉCANIQUE ET RÉSISTANCE DES MATÉRIAUX

**SESSION 2007** 

Durée: 1 heure Coefficient: 1

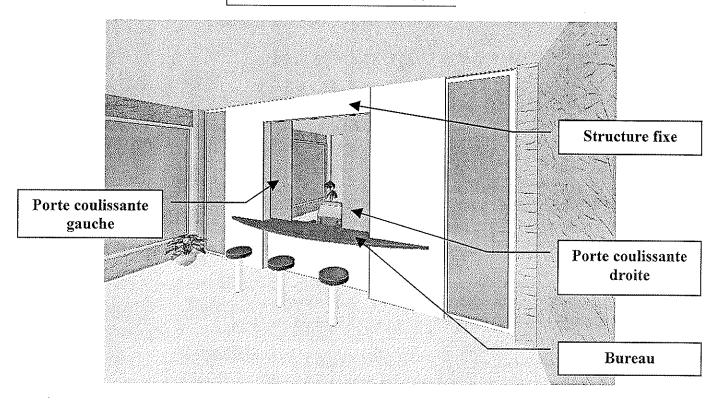
#### Matériel autorisé:

- Calculatrice conformément à la circulaire n°99-186 du 16/11/1999

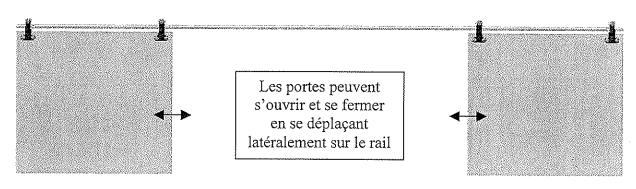
#### Aucun document autorisé

#### Documents à rendre avec la copie :

- Feuille réponse question 15 .......page 9/9

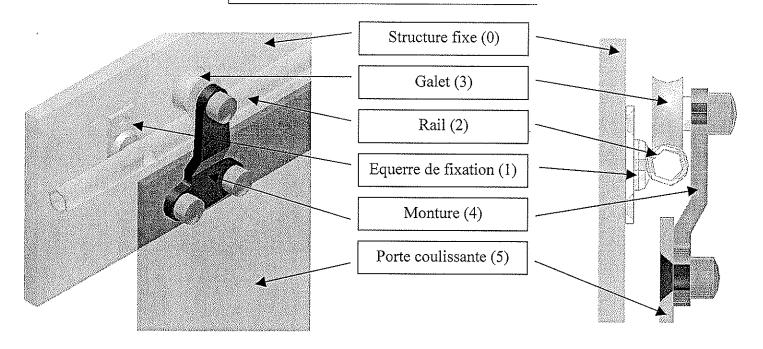

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 9 pages, numérotées de 1/9 à 9/9

| BREVET DE TECHNICIEN AGENCEMENT                               |     |                 |          |
|---------------------------------------------------------------|-----|-----------------|----------|
| Session 2007 Épreuve de mécanique et résistance des matériaux |     |                 |          |
| Coefficient                                                   | : 1 | Durée : 1 heure | Page 1/9 |


# PREMIÈRE PARTIE : STATIQUE (9 points)

Le hall d'accueil d'une entreprise est représenté ci-dessous. La construction permet la séparation entre l'accueil et le secrétariat. Des études de mécanique et de résistance des matériaux doivent être réalisées. Celles-ci porteront sur le système de guidage des portes coulissantes en verre, qui permettent la fermeture de l'accueil.

#### MISE EN SITUATION



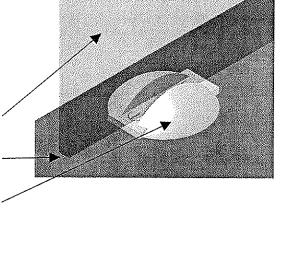

## DÉPLACEMENT DES PORTES COULISSANTES (vue côté bureau)

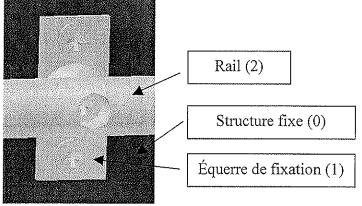


| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |
|---------------------------------------------------------------|-----------------|----------|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |
| Coefficient: 1                                                | Durée : 1 heure | Page 2/9 |

#### DESSINS DE L'ASSEMBLAGE




#### PRINCIPE DE FONCTIONNEMENT


Les portes sont suspendues sur le rail au moyen de deux montures chacune. Le déplacement latéral de celles-ci est permis grâce aux galets qui roulent sur le rail. Les portes sont également en contact en bas au moyen d'un guide vissé sur le bureau, ceci afin d'éviter l'effet de balancier.

Porte coulissante

Bureau

Guide





Le rail est maintenu à chaque extrémité sur la structure fixe grâce à deux équerres vissées sur celle-ci. La fixation du rail étant réalisée par vissage de celui-ci dans les équerres.

| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |
|---------------------------------------------------------------|-----------------|----------|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |
| Coefficient                                                   | Durée : 1 heure | Page 3/9 |

### HYPOTHÈSES

#### Voir schéma page 9/9

- On note «S» l'ensemble «Rail (2) + Galet (3) + Monture (4) + Porte coulissante (5) ».
- On suppose que l'équerre (1) est fixée à la structure fixe (0) au moyen de deux vis aux points A et B.
  - rightharpoonup Liaison pivot d'axe  $\vec{x}$  entre l'équerre (1) et la structure fixe (0) en A.
- $\mathcal{Z}$  Liaison ponctuelle (sphère-plan) de normale z entre l'équerre (1) et la structure fixe (0) en B.
  - Le poids de l'ensemble S, noté P, est supposé appliqué en C.
  - Ton considère l'ensemble en équilibre.
  - On néglige le poids de la monture, des vis d'assemblage et du galet.

### DONNÉES

- Gravité (accélération de la pesanteur) :  $g = 9.81 \text{ m/s}^2$ .
- $rac{1}{2}$  Les portes sont en verre trempé (masse volumique du verre trempé  $\rho = 2600 \text{ kg/m}^3$ ).
- The rail est en acier inox (masse volumique de l'acier inox  $ρ = 7850 \text{ kg/m}^3$ ).
- Action de l'ensemble S sur l'équerre (1), en C, notée :  $\{\tau_{s/l}\}_C$
- rightharpoonup Action de liaison de la structure fixe (0) sur l'équerre (1), en A, notée :  $\left\{\tau_{0/1}\right\}_{A}$ .
- riangle Action de liaison de la structure fixe (0) sur l'équerre (1), en B, notée :  $\left\{ \tau_{0/l} \right\}_{B}$ .
- Dimensions:

#### Rail en acier (forme tubulaire):

- Diamètre extérieur D = 25 mm.
- Diamètre intérieur d = 19 mm.
  - Longueur: 3,6 m.

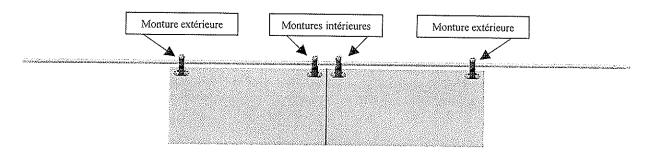
#### Porte coulissante en verre trempé (forme parallélépipédique):

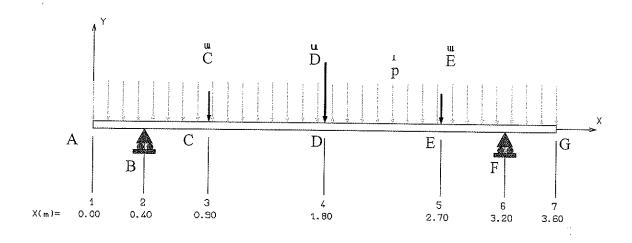
- Hauteur : H = 1,747 m.
- Largeur : L = 0.938 m.
- Epaisseur: 8 mm.

#### **QUESTIONS**

- 11. A partir des données du problème, calculer le poids d'une porte.
- 12. A partir des données du problème, calculer le poids du rail.
- 13. En fonction des résultats trouvés précédemment, en déduire le poids (noté  $\vec{P}$ ) de l'ensemble « S » sur une équerre (1) (on ne prendra en compte que la moitié du poids du rail car on ne travaille que sur une équerre).

| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |
|---------------------------------------------------------------|-----------------|----------|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |
| Coefficient: 1                                                | Durée : 1 heure | Page 4/9 |


# On donne pour la suite du problème : $\|P\| = 380 \text{ N}$


- 14. Isoler l'équerre (1) et faire le bilan des actions mécaniques extérieures qui s'y appliquent sous la forme de torseurs ou de vecteurs.
- 15. Appliquer le principe fondamental de la statique (PFS) à (1) et déterminer les actions mécaniques en A et B.

La méthode de résolution est laissée au choix du candidat : analytique ou graphique (réalisable sur la page 9/9). Quelle que soit la solution choisie, rendre impérativement la feuille 9/9.

# DEUXIÈME PARTIE : RÉSISTANCE DES MATÉRIAUX (11 points)

Afin de faire une étude approchée de la flexion du rail, on propose de modéliser celui-ci par une poutre selon la représentation ci-dessous. Celle-ci est située dans le cas le plus défavorable, portes fermées.





| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |  |
|---------------------------------------------------------------|-----------------|----------|--|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |  |
| Coefficient: 1                                                | Durée : 1 heure | Page 5/9 |  |

### HYPOTHÈSES

- rightharpoonup Le plan (A, x, y) est plan de symétrie.
- Toutes les actions mécaniques sont exercées dans ce plan.
- Poids propre du rail modélisé par la charge linéairement répartie p.
- Forces C et E représentant les actions des montures extérieures des portes sur le rail, appliquées respectivement en C et E.
- Force D représentant la résultante des actions des montures intérieures des portes sur le rail, appliquée en un point : D.
- Le rail est en liaison ponctuelle (sphère / plan) au point B, le point B matérialisant le centre de l'action de l'équerre sur le rail.
- ☐ Le rail est en liaison ponctuelle (sphère / plan) au point F, le point F matérialisant le centre de l'action de l'équerre sur le rail.
  - Les liaisons sont supposées parfaites (frottements négligés).

### DONNÉES

**CHARGES:** 

$$\| \mathbf{p} \| = 2 \text{ daN/m, avec } \mathbf{p} = -\mathbf{p} \cdot \mathbf{y}.$$

$$\| \mathbf{C} \| = \| \mathbf{E} \| = 16 \text{ daN, avec } \mathbf{C} = -\mathbf{C}. \quad \mathbf{y} \text{ et } \mathbf{E} = -\mathbf{E}. \quad \mathbf{y}$$

$$\| \mathbf{D} \| = 32 \text{ daN, avec } \mathbf{D} = -\mathbf{D}. \quad \mathbf{y}$$

### CARACTERISTIQUES DE LA POUTRE :

- $\bigcirc$  Distance (AB) = 0.4 m.
- rightharpoonup Distance (AC) = 0.9 m.

- $\sim$  Distance (AE) = 2,7 m.
- $\bigcirc$  Distance (AF) = 3,2 m.
- □ Longueur du rail (AG): L = 3,6 m.
- Rail en acier (forme tubulaire):
  - Diamètre extérieur D = 25 mm.
  - Diamètre intérieur d = 19 mm.
  - Longueur : L = 3.6 m.
- $\bigcirc$  Coefficient de sécurité s = 2.
- $rac{1}{2}$  Condition de déformation :  $\left| f_{\text{max i}} \right| \le \frac{L}{300}$
- $\text{Moment quadratique du tube}: \ I_{\text{Gz}} = \frac{\pi(D^4 d^4)}{64} \ \text{et} \ v = y_{\text{maxi}} = \frac{D}{2}.$

| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |
|---------------------------------------------------------------|-----------------|----------|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |
| Coefficient: 1                                                | Durée : 1 heure | Page 6/9 |

#### QUESTIONS

Un calcul préalable de statique appliqué au rail nous donne les éléments suivants :

$$\|\vec{\mathbf{B}}\| = \|\vec{\mathbf{F}}\| = 35,6 \text{ daN, avec } \vec{\mathbf{B}} = \mathbf{B} \cdot \vec{\mathbf{y}} \text{ et } \vec{\mathbf{F}} = \mathbf{F} \cdot \vec{\mathbf{y}}$$

#### 21. Etude du tronçon CD:

- **211.** Tracer un schéma de la partie de poutre à isoler (coupure fictive entre C et D) en indiquant les actions mécaniques qui s'y exercent.
- 212. Ecrire les équations d'équilibre de cette partie de poutre (étude du torseur de cohésion : équations de l'effort tranchant et du moment fléchissant).

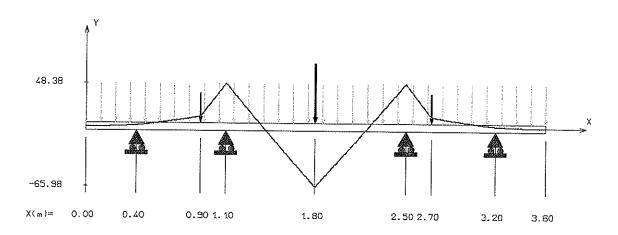
On donne pour la suite du problème :  $Mfz_{CD} = x^2 + 19.6x + 0.16$  (unité : daN.m) et  $Mfz_{maxi}$  situé à 1.8 m.

22. Calculer la valeur du Mfzmaxi.

On donne pour la suite du problème : Mfz<sub>maxi</sub> = 38,68 daN.m.

23. Calculer la contrainte  $\sigma_{maxi}$  et vérifier la condition de résistance.

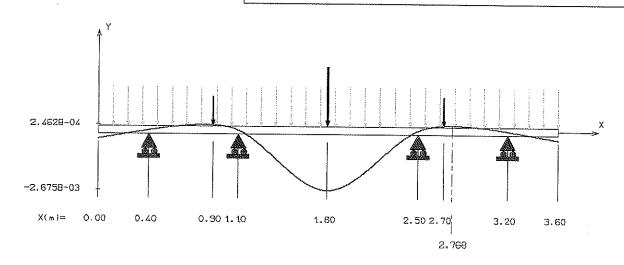
Compte-tenu du risque de rupture du rail, on propose de rajouter deux équerres entre B et F. Une étude avec le logiciel Rdm LeMans donne les diagrammes des contraintes et celui de la déformée (voir annexe page 8/9).


- 24. D'après l'annexe page 8/9, la condition de résistance est-elle vérifiée ? Justifiez votre réponse.
- 25. D'après l'annexe page 8/9, la nouvelle poutre répond-elle à la condition de déformation ? Justifiez votre réponse.

| BREVET DE TECHNICIEN AGENCEMENT |                                                               |          |  |
|---------------------------------|---------------------------------------------------------------|----------|--|
| Session 2007                    | Session 2007 Épreuve de mécanique et résistance des matériaux |          |  |
| Coefficient:                    | : 1 Durée : 1 heure                                           | Page 7/9 |  |

### **ANNEXES**

# **DIAGRAMME DES CONTRAINTES NORMALES (question 24)**


#### CONTRAINTES (MPa)

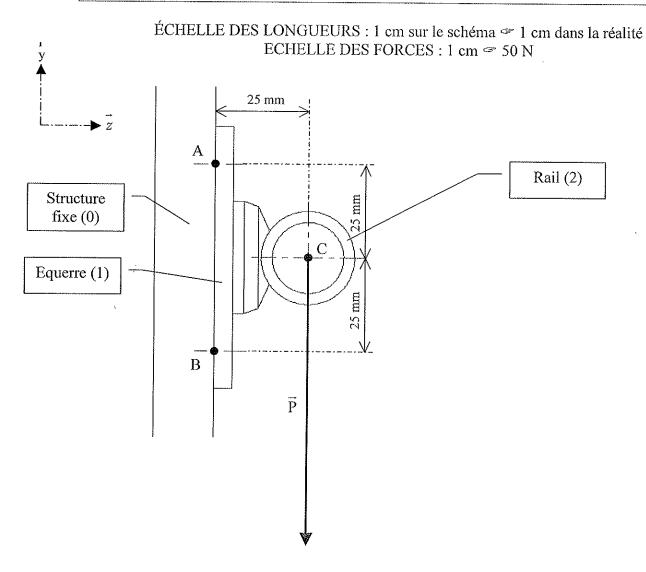


# DIAGRAMME DE LA FLECHE DE LA NOUVELLE POUTRE (question 25)

FLÈCHE (m)

Remarque : 2.4628-04 signifie 2.4628 x 10<sup>-4</sup> soit 0.00024628




| BREVET DE TECHNICIEN AGENCEMENT |                   |          |  |
|---------------------------------|-------------------|----------|--|
| Session 2007                    |                   |          |  |
| Coefficient:                    | 1 Durée : 1 heure | Page 8/9 |  |

| ш                 |
|-------------------|
| œ                 |
| $\overline{\sim}$ |
| 75                |
| щ                 |
| =                 |
| Z                 |
| ш                 |
| œ                 |
|                   |
| 131               |
| 빌                 |

| Examen ou concours : Série* :                                              |
|----------------------------------------------------------------------------|
| Spécialité/Option ;                                                        |
| Repère de l'épreuve :                                                      |
| Épreuve/sous-épreuve :<br>(Préciser, suivi s'il y a lieu, le sujet choisi) |

Numérotez chaque page (dans le cadre en bas de la page) et placez les feuilles intercalaires dans le bon sens.

# FEUILLE RÉPONSE QUESTION 15 - A RENDRE AVEC LA COPIE



| BREVET DE TECHNICIEN AGENCEMENT                               |                 |          |  |
|---------------------------------------------------------------|-----------------|----------|--|
| Session 2007 Épreuve de mécanique et résistance des matériaux |                 |          |  |
| Coefficient: 1                                                | Durée : 1 heure | Page 9/9 |  |