Maintenance des Equipements de Commande des Systèmes Industriels

DOSSIER TECHNIQUE

PRESSOSTAT XMJ-A0035

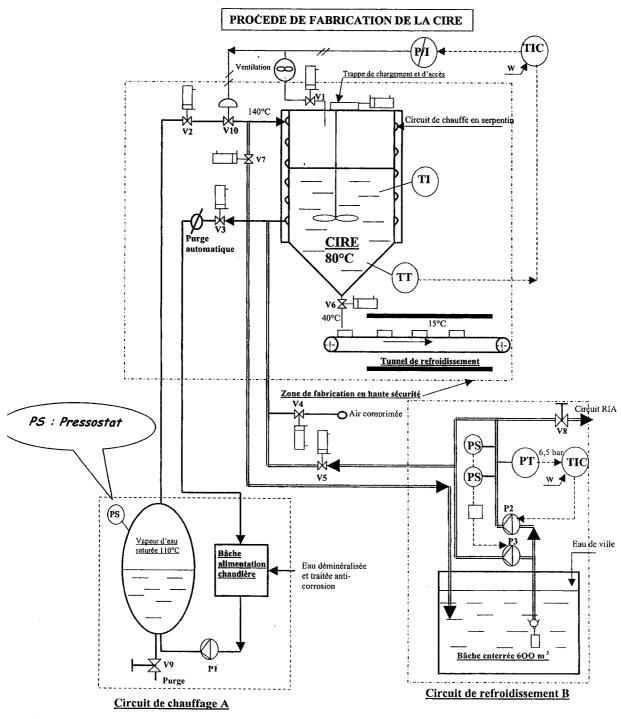
Documents Techniques: 14 feuilles référencées DT 1/14 à 14/14

Þ	Présentation du système	D1 2/14 et D1 3/14
•	Documentation technique PRESSOSTAT XMJ003	DT 4/14
Þ	Extrait de norme ISO 286-8015	DT 5/14
•	Extrait de norme ISO 3952	DT 6/14
•	Extrait de la norme ISO 8015 - NF ISO 10578 - NF EN ISO 2692	DT 7 et DT 8/14
•	Extrait de la norme NF EN 10025 - IC 10 - NF EN 10027	DT 9 et DT 10/14
•	Extrait de la norme NF EN 1780 - NF EN 573 - NF EN 1412	DT 11 et DT 12/14
•	Nomenclature du système	DT 13/14
•	Plan d'ensemble du système (format A3-H)	DT 14/14

Ce dossier doit être rendu complet en fin de l'épreuve EP2.


NUMÉRO DU CANDIDAT

Brevet d'Etudes Professionnelles Session 2007 DOSSIER TE									
EPREUVE EP2 : Dessin de	EPREUVE EP2 : Dessin de Construction								
M.E.C.S.I.	Coeff.: 1	Durée : 3 h00	DT 1/14						


DT 2/14 et DT 3/14

1 - PRESENTATION

Le mécanisme présenté dans cette étude est un *PRESSOSTAT de Type XMJ-A0035* commercialisé par la société TELEMECANIQUE du groupe SCHNEIDER ELECTRIC.

Ce mécanisme est un des objets techniques composants le *Procédé de Fabrication de la Cire* d'entretien et d'embellissement du bois produite par l'Entreprise V33. (voir Schéma ci-dessous)

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2007

DT 2/14

EP2: Dessin de Construction

70726

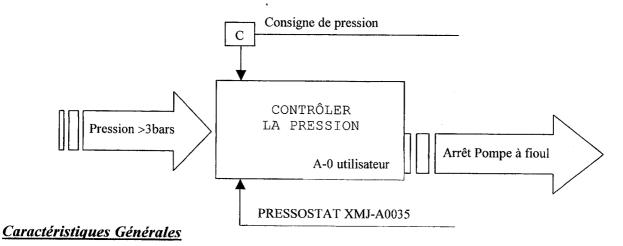
Procédure de fabrication de la cire :

Pour fabriquer de la cire, on mélange de la paraffine en phase solide avec des solvants en phase liquide.

A température ambiante, ces produits ne peuvent se mélanger. Pour les mélanger, on doit monter le tout à une température de 80° C par l'intermédiaire du circuit de chauffage A.

Après cuisson du mélange et obtention de la cire, le produit final doit être refroidi pour son conditionnement par le circuit de refroidissement B.

Les produits de fabrication de la cire étant volatiles et explosifs, tout circuit électrique doit être monté en dehors de l'atelier de fabrication.


Le Pressostat est utilisé pour *Contrôler la pression* à l'intérieur de la chaudière du <u>circuit de Chauffage</u> <u>A</u>.

Il permet de piloter le moteur de la Pompe d'alimentation en fioul permettant de produire de la vapeur d'eau à une température de 140°C et à une pression maximale de 3 bars. Cette vapeur d'eau sous pression permet via la vanne V2 de chauffer la cire lors de sa fabrication (condition indispensable).

La Fonction Principale du Pressostat est la suivante :

FP: CONTRÔLER LA PRESSION

Une première analyse peut être présentée à l'aide du diagramme ci-dessous :

Principe de Fonctionnement:

<u>Point haut</u>: Lorsque la pression dans la chaudière augmente et que l'effort qu'elle produit devient supérieur à celui d'opposition de l'étrier 2 généré par la compression du Ressort 27, l'ensemble (piston 19 et poussoir 20) fait pivoter le levier 4, ce dernier venant faire basculer et enclencher le contact électrique 28.

<u>Point bas</u>: Le point de retour du contact 28 n'est pas réglable et lorsque la pression dans la chaudière diminue et que l'effort qu'elle produit devient inférieur à l'effort du ressort 27, la descente de l'ensemble (piston 19 et poussoir 20) entraîne le basculement du levier 4 et permet au contact électrique 28 de revenir à sa position de départ.

<u>Réglage</u>: Le Pressostat XMJ-A0035, objet technique de cette étude, est un pressostat sans affichage. Pour régler la pression de déclenchement de ce dernier, il faut visser ou dévisser le bouton 9 en se référant aux indications + ou – se trouvant sur le couvercle 8. Un réglage précis ne pourra se faire qu'à l'aide d'un manomètre.

Brevet d'Etudes Professionnelles M.E.C.S.I.

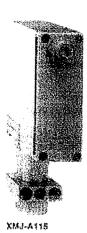
Session 2007

DT 3/14

EP2: Dessin de Construction

70726

Pressostats et vacuostats


pour circuite auxiliaires

Type XMJ pour la surveillance d'un seuil (écart non réglable)

Appareils à un contact unipotaire "OF", à action brusque

XMJ-A003

XW3-A1167

Maya da Tugʻaya Das	haut	en bas	nturaki (1) en hawl do pkyja	Pression maxi à cisaque cycle	oktszimba -neóbca trarrotot	Autorence	Wass
bor	bar	bar	par	bar	bas		hg
Huiles h	ydraulique	s, air, gau	drace, ea	y de mer, de O'	Ca - 70 (0)		
9,4	3,6	0,28	0.62	5	20	EDDA-LIKK	0,49
1	12	0.4	1.5	18	30	XMJ-A012	0,49
Z	20	1	3.1	25	40	XMJ-A020	0,48
Pluides e	Figures on	corrosifs.		160 C (2)		, see the second	· · · · Fiatin
5, 4	3.5	0.20	0.54	**	20	XMJ-A0035	
13.3	12	0,4	1.5	18	30	and the second s	0,40
St. 10 41	**			The same of the sa	of to a	XMJ/A0125	O,All
} ``~~~~	20 .	.) 	3.1			XMJ-A0205	0,41
-ressc	usiais a			oc affichage	;)		
Yaqa de égises 196	Tioux	en bas	durels (1) en hasz de plage	Fresson moxi Actorpus Ovcio	admissible appiden- telement	Reforme	Mass
184	061	bar	par	dar	par	er og menemene en	kg
iulias h	ydrauliques	i, air, cau	douce, na	u de mer, an O	Ca + 70 °C (2)		
1,4	3,5	0,28	0,54	ప	20	XMJ-A0037	0.5
	12	6,4	1,5	18	30	XMJ-40127	0,51
!	20		3.1	25	ar)	XMJ-80207	0,50
inidas e	manda ou i	. aliaerro	ae oi⊴cia	450 °C.20			, via
1,4	3,5	6.28	0.54	å	20	XMJ-A00376	i ini
•	19	0.4	1.33	18	30	The common to th	0.50
	80	Ų. A				XMJ-A01276	0,90
			3.1	25	40	XMJ-A02075	0,80
*****	Sidis a i			jue (sans al	****		
Yoge do Sgioge		Ecorta no en bus	made (1) on haar	Prossion mate a chaque	admisaible acoidan-	Réderonce	Mass
08 047	hour ber	da plago bur	da plago ber	cycle bar	tellament Ixar		kg
killes no	densilianes	wie anne		i da mar, ce 0			.**23
3	56	5	10	83	116	Ger a a a man	
0		_				XM.I-A050	0,66
	115	6,5 	16 	198	260	XM.5-A115	0,60
	estelles el c	soumet i	i u le centrici	ue (avec ai	ticnage)		
lage da Iglage	town at	Scarts nat	an house	Pression meso a charges	aceidan	(Scheleno)	Most
	par bar	de plage bar	gen. Ge brafse	oyele bar	tellame/il bar		kg
ulles lev	drauliques	, abc, gale c	fauce, sou	da mar, de 0 🦮	Q a + 70 °C (2)		
	-					and the second of	
	50	5	10	53	110	XMJ-A0507	0,70

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2007

DT 4/14

EP2: Dessin de Construction

70726

2 - EXTRAIT DE NORME : ISO 286-8015 NF EN 20286

				is us io	ioi alle					: 1 µm =	0,001 m	ım)		
						aimensi	ons nomi	nales (e	n mm)					
u-de i (incl		1 3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500
	ei	16	-22	-28	-34	-41	50	-60	-71	83	-96	100		
18	es	6	-10	-13	-16	20	-25	-30	-36	-43	-50	108 56	-119 -62	-131
	ei	-20	-28	-35	-43	-53	64	~76	-90	-106	-1 2 2	137		-68
g5	es	-2	-4	-5	-6	-7	9	10	-12	14	-122	-137	151 18	-165
	ค่	-6	-9	-11	-14	16	-20	23	27	-32	-15 -35	-17		20
g6	ÐS	2	4	5	6	7	-9	-10	-12	-32	15		-43	47
	ei	-8	-12	14	17	20	-25	-29	-34	-39	44	17 49	-18	-20
h5	es	ο	0	0	Ö	0	0	0	-34	-39	0		54	-60
	ei	4	5	-6	-8	9	-11	13	15	18		0	0	0
h6	es	0	ō	ő	Ö	ő	Ó	13	13		-20	23	-25	27
	ei	6	8	-9	11	-13	16	~19	2 2	0 25	0	0	0	0
h7	es	ō	Ö	ŏ	0	-13	0	-19	22		-29	-32	-36	-40
	ei	-10	-12	-15	18	-21	25	-30		0	0	0	0	0
h8	es	0	0	ō	ő	0	-23	30	-35	-40	-46	52	-57	~63
	ei	-14	-18	-22	-27	-33	39		0	0	0	0	0	0
h9	es	o	0	-22	27	~33		-46	54	-63	72	81	89	-97
	ei	-25	-30	36	-43	-52	0	0 -74	0	0	0	0	0	0
h10	មទ	0	0	0	-43	-52	62		-87	100	-115	-130	-140	-155
	ei	-40	-48	-58	70	84	100	0	0	0	0	0	0	0
h11	es	Ö	0	-36	70		100	-120	-160	-185	-210	-230	250	-250
	ei	60	-75	-90	-110	120	4.00	0	0	0	0	0	0	0
h13	es	0	0	-90	-110	-130	-160	-190	220	-250	-290	-320	-360	400
	ei	-140	-180	220	270	0	0	0	0	0	0	0	0	0
i6	es	+4	+6	+7	+8	-330	~390	-460	-540	-630	720	-810	-890	-970
,-	ei	2	~2	-2	+o -3	+9	+11	+12	+13	+14	+16	+16	+18	+20
i7	es	+6	+8	+10		-4	-5	-7	-9	11	-13	16	-18	-20
,.	Di Di	4	4	-5	+12 -6	+13	+15	+18	+20	+22	+25	+26	+29	+31
is5		1.2	±2,5	±3		-8	-10	-12	15	~18	-21	-26	-28	32
is6		±3	±2,5 ±4		±4	±4.5	±5,5	±6,5	±7.5	1:9	±10	11,5	±12,5	±13,5
js7		±5	±6	±4.5	:#:5,5	±6,5	± 8	±9.5	±11	12,5	±14,5	±16	±18	±20
is9		±12		±7,5	±: 9	±10,5	±12,5	±15	±17,5	±20	±23	4:26	±28,5	±31,5
is 1 7	- 1	±12	±15	±18	±21	±26	±31	::37	±43	±50	±57	±65	±70	±77
is13	ļ	±70	±37	±45	±65	±65	±80	±95	±110	±125	±145	±160	±180	±200
k5	es	+4	±90	±110	±135	±165	±195	±230	±270	:1:315	±360	±405	±445	±485
N.J	ei	0	+6	+7	+9	+11	+13	+15	+18	+21	+24	+27	+29	+32
k6	es	+6	+1	+1	+ 1	+ 2	+ 2	+ 2	÷ 3	+ 3	+ 4	+ 4	+ 4	+ 5
	ei	46	49	+10	+12	+15	+18	+21	+25	+28	+33	+36	+40	+45
m6	os l	+8	+1	4.7	+ 1	+ 2	+ 2	+ 2	+ 3	+ 3	+ 4	+ 4	+ 4	+ 5
HO	ei ei		+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+63
m7		+2	+4	+6	+7	+9	+9	+11	+13	+15	+17	+20	4.21	+23
****	es		+16	+21	+25	+29	+34	+41	+48	+55	+63	+72	+78	+86
n5	ei		+ 4	+6	+ 7	+ 8	+ 9	+11	+13	+15	+17	+20	+21	+23
цэ	es	+8	+13	+16	+20	+24	+28	+33	+38	+45	+51	⊹57	+62	+67
n C	ei	+4	+8	+10	+12	+15	+17	+20	+23	+27	+31	+34	+37	+40
n 6	es	10	+16	+19	+23	+28	+33	+39	+45	+52	+60	+66	+73	+80
- 0	ei	+ 4	+ 8	+10	+12	+15	+17	+20	+23	+27	+31	+34	+37	+40
p6	es	+12	+20	+24	+29	+35	+42	+51	4.59	+68	+79	+88	+98	+108
	ei l	+6	+12	+15	+18	+22	+26	+32	+37	+43	+50	+56	+62	+68

			Extrait	s de tol	érances	ISO po	ur alés:	age (en	microns	: 1 µm =	0,001 m	m)		
							ns nomir							
au-delâ à (inclu		1 3	3 6	6 10	10 18	18 ~ 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	
D10	ES	+60	+78	+98	+120	+149	+180	+220	+260	+305	+355	+400	+440	+480
	EI .	+50	+30	+40	+50	+65	+80	+100	+120	+145	+170	+190	+210	+230
E9	ES	+39	+50	+61	+75	+92	+112	+134	+159	+185	+215	+240	+265	+290
	Εŧ	+14	+20	+25	+32	+40	+50	+60	+72	+85	+100	+110	+125	+135
F8	ES	+20	+28	+35	+43	+53	+64	+76	+90	+106	+122	+137	+151	+165
	El	+6	+10	+13	+16	+20	+25	+30	+36	+ 43	+ 50	+ 56	+ 62	+ 68
G7	ES	+12	+16	+20	+24	+28	+34	+40	+47	+54	+61	+69	+75	+83
	E)	+2	+ 4	+ 5	+6	+ 7	+ 9	+10	+12	+14	+15	+17	+18	+20
H6	EŞ	+6	+8	+9	+11	+13	+16	+19	+22	+25	+29	+32	+36	+40
	EI	0	0	0	0	0	0	Ö	0	0	0	0	0	770
H7	ES	+10	+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+65
	EI	0	0	0	0	0	Ü	0	0	ΰ	0	0	10	10.
н8	ES	+14	+18	+22	+27	+33	+39	+46	+54	+63	€72	+81	+89	+97
	ΕI	0	0	0	0	0	0	0	0	0	0	0	+09	+91
Н9	E\$	+25	+30	+36	+43	+52	+62	+74	+87	+100	±115	+130	+140	+155
	EI]	0	0	O	O	0	0	Ü	0	0	0	0	0	+155
H10	ES	+40	+48	+58	+70	+84	+100	+120	+140	+160	+185	+210	+230	+250
	EI	0	0	0	Ö	0	0	0	0	0	0	7210	0.53	+23(
H11	ES	+60	+75	+90	+110	+130	+160	+190	+220	+250	+290	+320	+360	+40(
	EI	0	0	0	0	0	0	0	0	0	+2 5 0	+320	+300	
H12	ES	100	+120	+150	+180	+210	+250	+300	+350	+400	+460	+520		(
	ΕI	0	0	0	0	0	0	0	+330	4-24-0-0 0	4460		+570	+630
H13	ES	140	+180	+220	+270	+330	+390	+460	4540	+63D	+720	0 +810	0	(
	El	0	0	0	0	0	7330	0 0	4.540	+630	+/20		+890	+970
J7	ES	+4	+6	+8	+10	+12	+14	+18	+22	+26		0	0	(
	EI	-6	6	~7	-8	-9	11	-12	-13	-14	+30	+36	+39	+40
JS13	æΕ	±70	±90	±110	±135	±165	±195	±230	±270		-16	-16	-18	-20
K6	ES	+0	+2	+2	+2	+2	+3			±315	±360	±405	±445	±489
	EI	-6	-6	-7	-9	-11	-13	+4 15	+4	+4	+5	+5	+7	+8
K7	ES	Ö	+3	+5	+6	+6	-13 +7		-18	-21	-24	-27	-29	-32
	13	-10	9	10	12	15	18	+9	+10	+12	+13	+16	+17	+18
M7	ES	o	0	10	0			21	25	-28	-33	-36	-40	-45
	EI	-12	-12	-15		0	0	0	0	0	0	0	0	C
N7	ES	-4	-12	4	-18 5	-21	-25	-30	-35	-40	-46	-52	-57	63
	El	-14	-16	-19		7	8	9	10	12	14	-14	-16	-17
P7	ES	-6	16		-23	-28	-33	-39	-45	-52	-60	-66	-73	-80
. ,	EI	16	20	-9 24	-11	-14	17	21	-24	-28	-33	-36	···4 1	45
	Pno		ZU	24	59	35	42	51	59	68	79	-88	-98	-108

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2007

DT 5/14

<u>3 - REPRESENTATION NORMALISEE DES LIAISONS USUELLES ENTRE MECANISME : ISO 3952</u>

53 = 2	···	LIAISONS USUELLES DE DEUX SOLIDES	NF EN 23952, ISO 3952
Designation	Mouvements relatifs	Symbole Héprésentation plane	Buccamana
Liaison	O degre de liberté	nepresentation plane	Représentation en perspective
encastrement pullaison fixe	0 rotation 0 translation	OU	
Llaison pivot	1 degré de fluerte 1 rotation 0 translation	→	A)
Liaison glissière	1 degré de liberté 0 rotation 1 translation	* Ou Ou	*
Liaison hélicoldája	i degré de liberté. 1 rotation et 1 translation conjuguées	* * * * * * * * * * * * * * * * * * * *	* 5
Liaison pivot-giissant	2 degrés de liberté 1 rotation 1 translation	OU BUT	5
Llaison sphérique à doigta	2 dégrés de libertà 2 rotations 0 translation		-6-
Liaison ratule du liaison	3 degrés de liberté		
sphériqu e	3 rotations 0 translation		
Liaison appui-plan	3 degrés de liberté : 1 rotation		
Liaison	2 translations 4 degrée de liberté	* 1	, , ,
sphère-cylindre où linéaire annulaire	3 rotations 1 translation		\$
Liaison Ilnéaire	4 degrés de liberté	*	*
rectiligne	2 translations	7 *	
Liaison	5 degrés de liberté	* *	*
sphère-plan ou liaison ponctuelle*	3 rotations 2 translations		

4 - EXTRAIT DE LA NORME ISO 8015 - NF ISO 10578 - NF EN ISO 2692

Modes de Tolérancement :

9.12 Exigence de l'enveloppe

L'exigence de l'enveloppe s'applique notamment chaque fois qu'il convient de garantir :

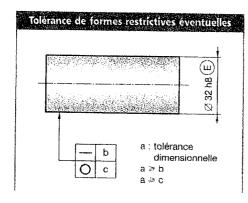
- les exigences fonctionnelles d'un ajustement du système ISO ou d'un ajustement avec des valeurs chiffrées;
- une forme parfaite de l'élément à la dimension au maximum de matière.

REMARQUES

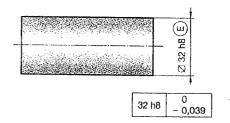
- Aucune valeur du tolérancement géométrique éventuel ne peut être supérieure à la valeur de la tolérance dimensionnelle.
- L'exigence de l'enveloppe est également appelée « principe de Taylor » ou « principe de l'enveloppe ».

PRINCIPE

Pour un élément isolé, soit un cylindre de révolution, soit un élément établi par deux plans parallèles :

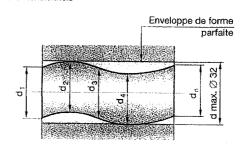

- l'enveloppe de forme parfaite à la dimension au maximum de matière ne doit pas être dépassée,
- les dimensions locales ne doivent pas être inférieures à la valeur minimale admissible.

Indication sur les dessins

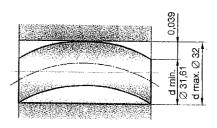

Faire suivre la valeur de la tolérance dimensionnelle du symbole (E).

REMARQUE

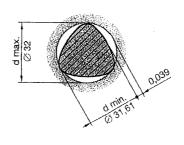
Si nécessaire, il est possible de compléter l'exigence de l'enveloppe par des tolérances de forme restrictives.



Exigence de l'enveloppe


Signification

Écarts dimensionnels



 $d_1, d_2, ..., d_n =$ dimensions locales comprises entre 31,61 et 32

Écart maximal de rectitude

Écart maximal de circularité

Brevet d'Etudes Professionnelles M.E.C.S.I.

EP2: Dessin de Construction

Session 2007

DT 7/14

Les Tolérances de Position :

	Symbole		Symbole
Parallélisme	[//]	Coaxialité (ou concentricité)	0
Perpendicularité		Symétrie *	
Inclinaison	_	Localisation	\Phi

Symbole	Définition de la	taláranca		F
Parallélisme	La zone de tolérance est	toler ance		Exemples
//	limitée par deux plans parallèles distants de t et parallèles au plan de référence.		0,1 D	La surface tolérancée doit être comprise entre deux plans distants de 0,1 et parallèles à la surface de référence D.
Perpendicularité	La zone de tolérance est limitée par deux plans parallèles distants de t et perpendiculaires au plan de référence.		1 0,08 A A	La surface tolérancée doit être comprise entre deux plans distants de 0,08 et perpendiculaires à la surface de référence A.
Inclinaison	La zone de tolérance est limitée par deux plans parallèles distants de t et inclinés de l'angle a par rapport au plan de référence.	α	60° A	La surface inclinée doit être comprise entre deux plans parallèles distants de 0,08 et inclinés de 60° par rapport à la surface de référence A.
Concentricité ou Coaxialité	La zone de tolérance est limitée par un cylindre de diamètre t dont l'axe coïncide avec l'axe de référence.		© 0,08 A A	L'axe du cylindre doit être compris dans un diamètre 0,08 coaxial à l'axe de référence A
Symétrie	La zone de référence est limitée par deux plans parallèles distants de t et disposés symétriquement par rapport à l'axe de référence.		= 0,1 A	Le plan médian de la rainure doit être compris entre deux plans parallèles distants de 0,1 et symétrique par rapport au plan de référence A.
	La zone de tolérance est limitée par un cercle de diamètre t dont le centre est dans la position théoriquement exacte du point considéré.	Øt	(68) ↑ (100) ← (100)	L'axe du trou doit être compris dans un cylindre de diamètre 0,08 dont l'axe est dans la position théoriquement exacte des cotes 100 et 68

Brevet d'Etudes Professionnelles M.E.C.S.I. Session 2007

DT 8/14

5 - EXTRAIT DE LA NORME NF EN 10025 - IC 10 - NF EN 10027

Classification par emploi

La désignation commence par la lettre **S** pour les aciers d'usage général et par la lettre **E** pour les aciers de construction mécanique.

Le nombre qui suit indique la valeur minimale de la limite d'élasticité en mégapascals*.

EXEMPLE S 235.

S'il s'agit d'un acier moulé, la désignation est précédée de la lettre G.

EXEMPLE GE 295.

* 1 MPa = 1 N/mm².

		Aciers d'	usage général
Nuance	R min.**	Re min.**	Emplois
S 185	290	185	
S 235	340	235	Constructions mécaniques
S 275	410	275	et métalliques générales
S 355	490	355	assemblées ou soudées.
E 295	470	295	Ces aciers ne conviennent pas
E 335	570	335	aux traitements chimiques.
E 360	670	360	
Moulage		GS 275 – G GE 335 – G	

^{**} R min. = résistance minimale à la rupture par extension (MPa). Re min. = limite minimale apparente d'élasticité (MPa).

Classification par composition chimique

Aciers non alliés

Teneur en manganèse < 1 %.

La désignation se compose de la lettre C suivie du pourcentage de la teneur moyenne en carbone multipliée par 100.

EXEMPLE

C 40.

40:0,40 % de carbone.

S'il s'agit d'un acier moulé, la désignation est précédée de la lettre G.

EXEMPLE

GC 25.

25:0,25 % de carbone.

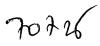
100 X					
9.7315		aciers		ΙĠ	

GC 22 - GC 25 - GC 30 - GC 35 - GC 40.

Principaux aciers de forgeage

C 22 - C 25 - C 30 - C 35 - C 40 - C 45 - C 50 - C 55.

	Aciers non alliés										
Nuance	R min.*	Re min.*	Emplois								
C 22	410	255	Constructions másoniques								
C 25	460	285	Constructions mécaniques.								
C 30	510	315	Ces aciers conviennent								
C 35	570	335	aux traitements thermiques								
C40	620	355	et au forgeage.								
C 45	660	375	,								
C 50	700	395	Nota:								
C 55	730	420	Cette symbolisation ne s'applique								
C 60	HRC	≥ 57	pas aux aciers de décolletage.								


	Symboles chimiques internationaux							
Élément d'alliage	Symbole chimique	Elément d'alliage	Symbole chimique	Elément d'alliage	Symbole chimique			
Aluminium	Al	Cobalt	Со	Nickel	Ni :			
Antimoine	Sb	Cuivre	Cu	Niobjum	Nb			
Argent	Ag	Étain	Sn	Plomb	Pb			
Bérylium	Be	Fer:	Fe	Silicium	Si			
Bismuth	Bi	Gallium	Ga	Strontium	Sr			
Bore	В	Lithium	Li	Titane	Ti -			
Cadmium	Cd	Magnésium	Mg	Vanadlum	; V			
Cérium	Ce	Manganèse	Mn	Zinc	Zn			
Chrome	Cr	Molybdène	Mo	Zirconlum	Zr			

Brevet d'Etudes Professionnelles M.E.C.S.I.

EP2: Dessin de Construction

Session 2007

DT 9/14

Aciers faiblement alliés

Teneur en manganèse ≥ 1 %. Teneur de chaque élément d'alliage < 5 %.

La désignation comprend dans l'ordre :

- un nombre entier, égal à cent fois le pourcentage de la teneur moyenne en carbonne;
- **u** un ou plusieurs groupes de lettres qui sont les symboles chimiques des éléments d'addition rangés dans l'ordre des teneurs décroissantes;
- une suite de nombres rangés dans le même ordre que les éléments d'alliage, et indiquant le pourcentage de la teneur moyenne de chaque élément.

Les teneurs sont multipliées par un coefficient multiplicateur variable en fonction des éléments d'alliage (voir tableau ci-contre).

EXEMPLES

55 Cr 3.

0.55 % de carbone -0.75 % de chrome (3 : 4 = 0.75).

0.51 % de carbone -1 % de chrome (4:4=1).

Pour cette désignation, le pourcentage de vanadium n'est pas précisé.

Teneur d'au moins un élément d'alliage \geq 5 %.

Aciers fortement alliés

La désignation commence par la lettre X suivie de la même désignation que celle des aciers faiblement alliés, à l'exception des valeurs des teneurs qui sont des pourcentages nominaux réels.

EXEMPLE

X 30 Cr 13.

0,30 % de carbone - 13 % de chrome.

Aciers rapides

La désignation comprend successivement les symboles suivants :

- **■** Les lettres HS.
- # Les nombres indiquant les valeurs des éléments d'alliage dans l'ordre suivant :
- tungstène (W),
- molybdène (Mo),
- vanadium (V),
- cobalt (Co).
- m Chaque nombre représente la teneur moyenne.

EXEMPLE

HS 8,5-3,5-3,5-11.

8,5 % de tungstène, 3,5 % de molybdène, 3,5 % de vanadium, 11 % de cobalt.

Aciers faibl	ement alliés			
	Traitement de référence			
Nuances usuelles	R min.	Re min.*		
38 Cr 2	800	650		
34.Cr.4	880	660		
37 Cr 4	930	700		
41 Cr 4	980	740		
55 Cr 3	1 100	900		
100/Cr/6	HRC ≥ 62			
25 Cr Mo 4	880	700		
95 Cr Ma 4	980	770		
42 Cr.Mo 4	1 080	850		
16 Cr N/6	800	650		
17 Cr NI M6/61	1 130	880		
30 Cr Ni Me 81	1 030	850		
51 Cr V 4	1 180	1 080		
16 Min Cr 5	1 080	835		
20 Mn Gr 5	1 230	980		
36 Ni Cr Ma 16	1 710	1 275		
51 \$17	1 000	830		
60 SI Cr7	1 130	930		

NOTA :

Cette symbolisation s'applique aussi aux aciers non alliés de décolletage.

	Co	effici	ent mi	ıltiplica	ateur		
Élém	ent d'al	liage		Coef	Elen d'al		Coef
Cr, Co, Mb, Al, Be, Cu, N	NI, SI, W			4	Ce. N.	P 5	100

	Traitement	de référence	
Nuances usuelles	R min.*	Re min.*	
X4 Cr Mo S 18	400	275	
X 30 Cr 13	HRC ≥ 51		
X 2 Cr Ni 19/11	460	175	
X 5 Cr Ni 18-10	510	195	
X5 CFN/M6:17:12	510	205	
X 6 CF NI TI 18:10	490	195	
X 6 Cr Ni Ma Ti 17-12	540	215	

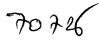
HS 8,5:3,5:3,8-11 (Nuance Sandvick © 45)

Cette nuance doit toujours être choisie en priorité.

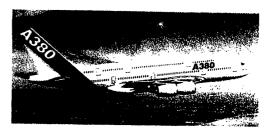
Il s'agit d'un acier ràpide, fortement allié, capable de résister à des températures élevées.

HS 6,5-7-6,5-10,6 (Nuance Sandvick C 60)

Cette nuance est un choix alternatif lorsqu'une haute résistance à l'usure est un critère déterminant.


NOTA : Les aciers rapides peuvent être revêtus d'une couche de nitrure de titane (Ti N) qui en augmente la dureté et la longévité.

Brevet d'Etudes Professionnelles M.E.C.S.I.


EP2: Dessin de Construction

Session 2007

DT 10/14

82 Désignation des métaux non ferreux

82.1 Aluminium et alliages d'aluminium moulés

NF EN 1780

La désignation utilise un code numérique. Il peut être suivi éventuellement, si cela est justifié, par une désignation utilisant les symboles chimiques des éléments et de nombres indiquant la pureté de l'aluminium ou la teneur nominale des éléments considérés.

Exemples de désignations usuelles :
EN AB-43 000 ou EN AB-43 000 [Al Si 10 Mg].
Alliage d'aluminium moulé – Silicium 10 % – Magnésium.
Exemple de désignation exceptionnelle :
EN AB-Al Si 10 Mg.

Nuances usuelles	R min.*	Re min.*	Emplois
EN AW-1050 [AI 99,5]	80	35	Appareils ménagers. Matériels électriques.
EN AB-21 000 [Al Cu 4 Mg Ti]	330	200	Se moule bien. S'usine très bien. Ne pas utiliser en air salin.
EN AB-43 000 (Al Si 10 Mg)	250	180	Se moule très bien. S'usine et se soude bien. Convient en air salin.
EN AB-44 200 [Al Si 12]	170	80	Se moule et se soude très bien. La forte teneur en silicium rend l'usinage difficile.
EN AB-51 300 [Al Mg 5]	180		Excellentes aptitudes à l'usinage, au soudage, au polissage. Résiste très bien à l'air salin.

82.2 Aluminium et alliages d'aluminium corroyés

NF EN 573

La désignation utilise un code numérique. Il peut éventuellement être suivi, si cela est justifié, par une désignation utilisant les symboles chimiques des éléments et de nombres indiquant la pureté de l'aluminium ou la teneur nominale des éléments considérés.

Exemples de désignations usuelles : EN AW-2017 ou EN AW-2017 [Al Cu 4 Mg Si]. Alliage d'aluminium – Cuivre 4 % – Magnésium – Silicium. Exemple de désignation exceptionnelle : EN AW-Al Cu 4 Mg Si.

Nuances usuelles*	R min.*	Re min.*	Emplois	
EN AW-1350 [EAJ 99,5]**	6 5	_	Matériels électrodomestiques. Chaudronnage.	
EN AW-1050 [AI 99,5]	100	75	Matériels pour industries chimiques et alimentaires.	
EN AW-5154 (Al Mg 3,5)	220	130	,	Bonne résistance aux agents
EN AW-5754 [Al Mg 3]	270	190	Pièces chaudronnées : citernes, gaines, tubes, etc.	atmosphériques et à l'air sali Bonne soudabilité.
EN AW-5086 [Al Mg 4]	310	230	Tuyauteries.	borne soudabline.
EN AW-2017 [Al Cu 4 Mg Si]	390	240	Pièces usinées et forgées.	
EN AW-2030 [Al Cu 4 Pb Mg]	420	280	Pièces décolletées (fragmentation des copeaux).	Francis I. de Sur de
EN AW-7075 [Al Zn 5,5 Mg Cu]	520	440	Pièces usinées et forgées	Éviter de les utiliser à l'air salin. Se soudent difficilement.
EN AW-7049 [Al Zn 8 Mg Cu]	600	560	à hautes caractéristiques mécaniques.	
* Produits filés, étirés, laminés ou forgé	s. ** Pou	r les applicatio	ins électriques particulières le symbole Al est précédé de	la lettre F

82.3 Alliages de zinc moulés

Nuances usuelles	R min.*	Re min.*	Emplois
Zamak 3	260	250	Alliage de fonderie sous pression : carburateurs, poulies, boîtiers divers (bijouterie, cosmétiques)
ZA 8	375	290	Moulage coquille ou sous pression. Bon état de surface. Bonnes caractéristiques mécaniques.
ZA 27	425	370	Moulage sable, coquille sous pression. Très bonnes caractéristiques mécaniques.
Kayem 1	230		Alliage pour la fabrication par fonderie d'outillages de presse et de moules pour plastiques.

^{*} R min. = résistance minimale à la rupture par extension (MPa). Re min. = limite minimale apparente d'élasticité (MPa).

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2007

DT 11/14

70726

82.4 Magnésium et alliages de magnésium

La désignation utilise un code numérique ou les symboles chimiques des éléments de nombres indiquant la teneur nominale des éléments considérés.

Les alliages de magnésium sont intéressants pour leur légèreté (masse volumique 1,74) et par leur capacité à absorber les bruits et les vibrations.

Nuances usuelles	R min.**	Re min.**	Emplois
EN-MC 21 120 [Mg Al 9 Zn 1]	240	110	Carters de boîtes de vitesses. Éléments de structures. Bonne usinabilité.
EN-MC 65 110 [Mg Zn 4 RE 1 Zr]*	210	135	Pièces de résistance de forme simple. Non soudable.
EN-MC 21 110 [Mg Al 8 Zn 1]	200	140	Pièces peu sollicitées. Bonne usinabilité.
EN-MC 21 120 [Mg Al 9 Zn 1]	210	150	Pièces nécessitant une bonne coulabilité. Carters complexes.

* RE = métaux en terre rare.

82.5 Titane et alliages de titane

La désignation utilise les symboles chimiques des éléments suivis de nombres indiquant la pureté du titane ou la teneur nominale des éléments considérés.

L'alliage Ti 6 Al 4 V est très utilisé dans l'aéronautique, la lunetterie et les implants chirurgicaux pour ses caractéristiques mécaniques et sa légèreté (masse volumique 4,5). L'anodisation augmente sa résistance à l'usure et à la corrosion (chapitre 83).

Nuances usuelles	R min.**	Re min.**	Emplois
Ti-P 99 002 (titane affiné)	390	-	Pièces en tôles d'épaisseur maximale de 6 mm.
Ti-P 99 003	570	-	Pièces en tôles d'épaisseur maximale de 6 mm.
Ti 6 Al 4 V	860	· 780	Barres et fils laminés. Pièces moulées, forgées ou usinées.
Ti 6 Al Zr 5 D	990	850	Bonnes caractéristiques à chaud – θ = 520 °C – R min. = 620 – Re min. = 480.

82.6 Cuivre et alliages de cuivre

NF EN 1412

La désignation utilise un code numérique ou les symboles chimiques. Dans ce dernier cas, on associe au symbole chimique de base (Cu) les symboles des éléments d'addition suivis des nombres indiquant les teneurs nominales de ces éléments.

Exemples de désignations usuelles : CW 612 N ou Cu Zn 39 Pb 2. Alliage de cuivre corroyé* - Zinc 39 % - Plomb 2 %. Exemple de désignation globale :

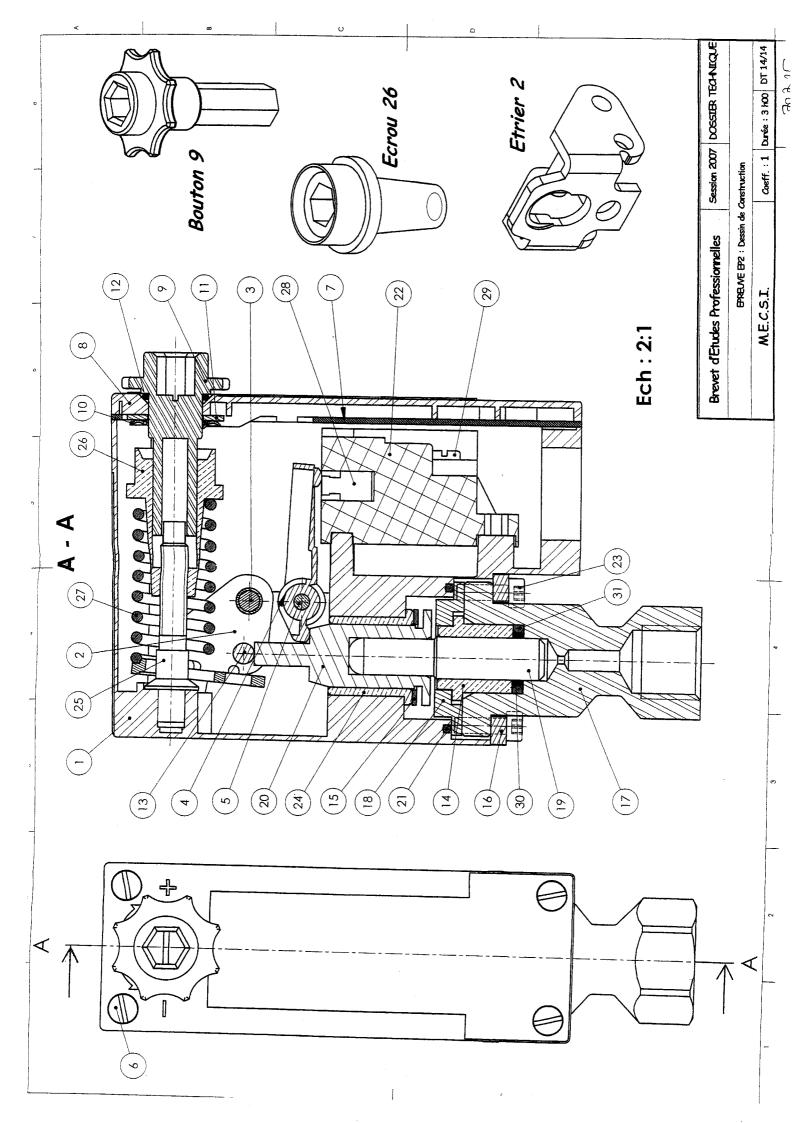
CW 612 N [Cu Zn 39 Pb 2].

Nuances usuelles*	R min.** F	le min.**	Emplois
CR004A [Cu - ETP] (cuivre affiné)	200	70	Matériau à très bonne conductibilité électrique ; convient particulièrement pour
CW004A [Cu - ETP]	350	300	câbles, bobinages et contacts.
CW113C [Cu Pb 1 P]	350	300	Utilisé en décolletage. Très haute conductibilité électrique et thermique.
CW453K [Cu Sn 8] (bronze)	490	390	Matériau de frottement pour bagues, douilles, chemises, segments.
CC480K [Cu Sn 10]	-	_	Pièces moulées sans caractéristiques particulières.
CC493K [Cu Sn 7 Zn 4 Pb 7]	210	-	Robinetterie.
CC483K [Cu Sn 12]	200	_	Construction mécanique
CW460K [Cu Sn 8 Pb P]	290	160	Pièces d'usure : pignons et roues d'engrenages, écrous.
CW101C [Cu Be 2] (cuivre au béryllium)	1 400	1 350	Ressorts (matériels électriques, matériels résistant à la corrosion). Connecteurs.
CW502L [Cu Zn 15] (laiton)	400	-	Alliage de forgeage à froid ; se polit bien et convient aux revêtements électrolytiques.
CC750S [Cu Zn 33 Pb 2]	490	240	Pièces moulées.
CW506L [Cu Zn 33]	590	210	Construction mécanique générale et pièces découpées dans la tôle. Il se polit bien.
CC7655 [Cu Zn 35 Mn 2 Al 1 Fe 1]	410	160	Bonnes caractéristiques mécaniques. Bonnes qualités frottantes.
CW710R [Cu Zn 35 Ni 3 Mn 2 Al Pb]	540	240	Mise en œuvre aisée. Prix modéré.
CW612N [Cu Zn 39 Pb 2]	400	200	Alliage le plus utilisé pour la plupart des pièces décolletées. Très bonne usinabilité.
CW401J [Cu Ni 10 Zn 27] (maillechort)	380	170	Matériels de microtechniques. Résistance à la corrosion. Soudabilité.
CC333G [Cu Al 10 Fe 5 Ni 5] (cupro-aluminium	600	250	Pièces devant résister à la corrosion (agents atmosphériques, eau de mer).
CW307G [Cu Al 10 Ni 5 Fe 4]	690	320	Inoxydables à chaud. Pièces mécaniques diverses (compresseurs, pompes, etc.).
CW111C [Cu Ni 2 Si] (cupro-silicium)	400	140	Pièces de frottement sous fortes charges, avec chocs éventuels.

^{*} W : matériaux corroyés – C ou B matériaux moulés – R cuivres bruts affinés. ** R min. et Re min. en MPa.

EP2 : Dessin de Construction

Session 2007 DT 12/14


REPERE	NBRE	NOMENCLAT	MATIERE
1 Depend	1	CORPS	Al-Si10 Mg (A-S10 G)
2	1	ETRIER	S235 (E24)
3	1	AXE ETRIER	S235 (E24)
4	1	LEVIER	FU E10 58
5	1	AXE LEVIER	CW 612N (Cu- Zn39 Pb2)
6	4	VIS COUVERCLE Vis à tête cylindrique fendue ISO 1207 – M3*10	S275 (E28)
7	1	JOINT COUVERCLE	Néoprène
8	1	COUVERCLE	Al-Si10 Mg (A-S10 G)
9	1	BOUTON	Al-Si10 Mg (A-S10 G)
10	1	ANNEAU d'Arrêt à arc-boutement	S235 (E24)
11	1	RONDELLE BOUTON	S235 (E24)
12	1	JOINT TORIQUE BOUTON	NBR
13	1	AXE POUSSEE	S235 (E24)
14	1	PALIER INFERIEUR	CW 612N (Cu- Zn39 Pb2)
15	1	JOINT PLAT	Néoprène
16	1	BRIDE	S235 (E24)
17	1	RACCORD	Al-Si10 Mg (A-S10 G)
18	1	BAGUE	S235 (E24)
19	1	PISTON	35 Cr Mo 4 (35 CD 4)
20	1	POUSSOIR	35 Cr Mo 4 (35 CD 4)
21	1	JOINT TORIQUE BAGUE	NBR
22	1	pans creux ISO 4762 – M3*10 BOITIER CONTACT ELECTRIQUE	. ,
23	4	VIS BRIDE Vis à tête cylindrique à six	S275 (E28)
24	1	PALIER SUPERIEUR	CW 612N (Cu- Zn39 Pb2)
25	1	AXE FILETE	S275 (E28)
26	1	ECROU	Al-Si10 Mg (A-S10 G)
27	1	RESSORT de réglage point haut	60 Si Cr 7 (60SC 7)
28	1	VIS CONTACT Vis à tête cylindrique large fendue ISO 1580 – M3*10 CONTACT TOUCHE	S275 (E28)
30 29	1	JOINT BAGUE PISTON	Néoprène
31	1	JOINT TORIQUE PISTON	NBR

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2007

DT 13/14

