
BREVET PROFESSIONNEL INSTALLATIONS ET EQUIPEMENTS ELECTRIQUES

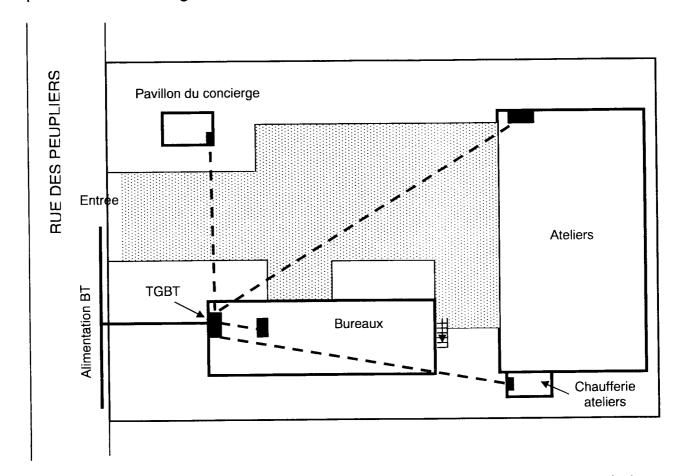
SESSION 2007

EPREUVE E1 ETUDE EN VUE DE LA PREPARATION

Brevet Professionnel	Session 2007	DOSSIER REPONSES	
EPREUVE E1 : Etude er	n vue de la préparatio	n	
Installations et Equipements Electriqu	es Coeff. : 6	Durée : 4h	DR : 1/19

BAREME

QUESTION N°1:	
Etude de l'éclairage de la salle de réunion	/35
QUESTION N°2:	
Schémas de liaison à la terre	/25
QUESTION N°3:	
Etude de la distribution dans l'atelier de mécanique	/10
QUESTION N°4:	
Etude de l'éclairage de l'atelier de fabrication	/20
QUESTION N°5:	
Etude d'une partie du tableau de distribution des locaux	/24
QUESTION N°6:	
Anglais technique	/6


TOTAL

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 2/19

Une entreprise de menuiserie implantée dans une petite zone artisanale comporte trois bâtiments.

- Les locaux administratifs (bureaux).
- Les ateliers de fabrication.
- Le pavillon du concierge.

Les armoires électriques et les différents coffrets de distribution des locaux sont alimentés à partir d'un TGBT placé au sous-sol des locaux administratifs.

Caractéristiques de l'installation

- Type d'abonnement : Tarif JAUNE, un seul niveau de puissance
- Puissance souscrite: 120 KVA
- Tension triphasée (neutre distribué) : 230 / 400 V f = 50Hz
- Intensité correspondante : 175 A
- Protection EDF par fusibles HPC
- Conducteurs d'alimentation de section 50 mm², à partir du coffret de comptage
- Schéma de liaison à la terre TT
- Prise de terre des masses métalliques en cuivre nu de 25 mm²

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 3/19

1- ETUDE DE L'ECLAIRAGE DE LA SALLE DE REUNION.

Question 1

/ 35

Déterminer le nombre de luminaires dans la salle de réunion :

Les luminaires seront du type encastré dans le module du faux plafond. Luminaires MAZDA Bel Air EFH 3x14W.

Les tubes fluorescents Ø16 MAZDA INCANDIA/830 ont un indice de rendu des couleurs (IRC) de 85.

<u>Caractéristique de la pièce :</u> Longueur et largeur (voir plan)

Hauteur totale: 2,85m

Hauteur du plan utile : 0,85m

Plafond: faux plafond blanc Murs: peinture couleurs pastel Plan utile: tables en bois clair

En vous aidant des indications ci-dessus et du dossier ressources complétez les tableaux de l'avant projet d'éclairage de la salle de réunion.

Tableau n°1 : Données relatives	au local		
Nature de l'activité :	Facteur de réflexion :	Eclairement moyen (E):	
	Plafond :		
	Murs:		
Dimensions du local :	Dian utila i	Facteur	/ 5
Longueur a =	Plan utile :	d'empoussièrement (d1)	
	Indice de réflexion :		
Largeur b =		Facteur de dépréciation	
Hauteur totale ht = 2,85 m		(d2)	
Hauteur du plan utile = 0,85 m			

Brevet Professionnel : Installations et Equipements Electriques

E1 : Etude en vue de la préparation

Session 2007 DR: 4/19

Tableau n°2 : Données relatives aux luminaires et aux tubes				
Luminaires	Tubes			
Mode d'éclairage : F1 : direct intensif	Type de lumière :			
Type de luminaires : Encastré En plafonnier	Tube : puissance et diamètre :			
Suspendu Rayer la ou les mentions inutiles.	Flux lumineux d'un élément en lumens (lm) :			
	Indice de rendu des couleurs (IRC) :			
Equation photométrique :	muice de rendu des codiedis (INO).			
Indices de protection IP = IK =	Efficacité lumineuse :			

1	5
•	_

T-1-1 00 -	0.1	d 		4-4-1
Tableau n°3 :	Caicui	au iiux	iumineux	เบเลเ

Indice du local (k):

h = ht - h' - hu =

 $k = \frac{a \times b}{h.(a + b)} =$

Facteur de suspension (J):

Indice de réflexion :

Classe du luminaire :

Facteur d'utilance (U) :

Tableau n°3 (suite): Calcul du flux lumineux total

Flux lumineux total à produire (F):

prendre c = 1

$$F = \frac{E \times a \times b \times c \times d1 \times d2}{=} =$$

F est en lumens (lm)

 $u = \eta_i U_{A-S} + \eta_s U_T$

 η_i = rendement du luminaire vers la partie inférieure

 η_s = rendement du luminaire vers la partie supérieure

Les luminaires utilisés dans la salle de réunion ont un η_s égal à 0

U_{A-S}: utilance correspondant à la classe du luminaire

Tableau n°4 : Calcul du nombre de luminaires (N)

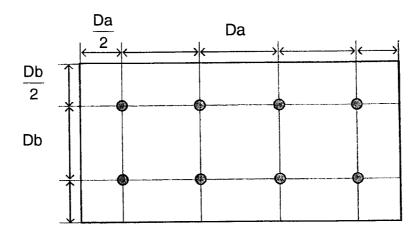
$$N = \frac{F}{n \times flux \ lumin \ eux \ d'un \ tube} =$$

/ 5

n : nombre de lampes dans un luminaire

Nombre minimum de luminaires :

Répartition des luminaires dans la salle de réunion


Détermination de la distance maximale entre deux luminaires (coefficient D) :

D =

Nombre de luminaires sur la longueur (arrondi au chiffre supérieur) : $\frac{a}{D}$ =

Nombre de luminaires sur la largeur (arrondi au chiffre supérieur) : $\frac{D}{D}$ =

Calculer la distance entre les luminaires

Da : distance entre deux luminaires sur la longueur

$$Da = \frac{a}{\text{nombre de lumin aires sur la longueur}}$$

Db: distance entre deux luminaires sur la longueur

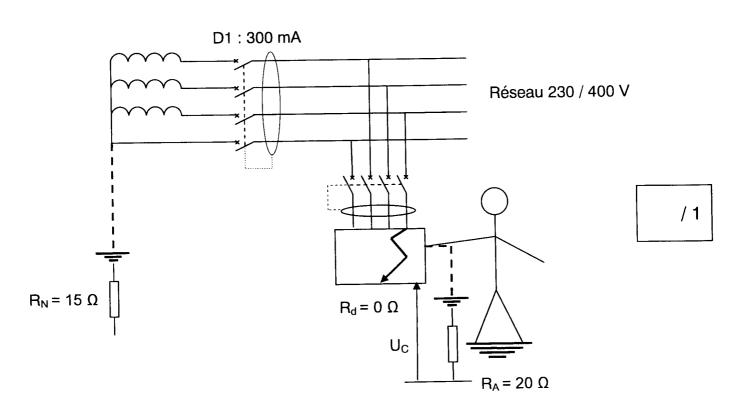
$$Db = \frac{b}{\text{nombre de lumin aires sur la largeur}}$$

Sur le plan ci-dessous (échelle 1cm = 1m) réaliser l'implantation des luminaires de la salle de réunion (représenter les luminaires par une croix).

2- SCHEMAS DE LIAISON A LA TERRE.	Question 2
La norme C15 100 définit trois schémas de liaison à la terre, TT, IT, TN.	/ 25
Quel est le rôle des schémas de liaison à la terre ?	
	/ 2
Le schéma de liaison à la terre utilisé dans l'installation électrique de cette enti	reprise est TT.
SCHEMA TT	
1 ^{ère} lettre T :	
2 ^{ème} lettre T :	/1
Quelles sont les conditions de réalisation du schéma de liaison TT ? (conditions concernant les masses des récepteurs, la prise de terre, les dispos	sitifs de protection.
	/2

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 8/19

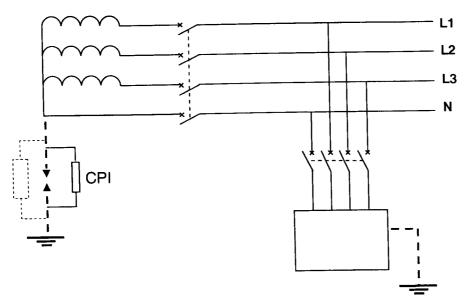

Question 2

Que	se passe-t-i	l lorsqu'un	défaut	d'isolement	survient ?
-----	--------------	-------------	--------	-------------	------------

		/ 2
		12
ı		, 2
ı		
i	· ·	

Sur l'une des machines de l'atelier une phase touche accidentellement la masse

Représenter (en rouge) le courant de défaut qui circule dans l'installation. (schéma ci-dessous).



Calculer le courant de défaut ld.

Calculer la tension $U_{\mathbb{C}}$ qui s'établit entre la masse de la machine et la terre. Que peut-on dire de cette tension ?	
	/2
L'employé qui utilise cette machine est-il en danger ? Justifier votre réponse.	
	/ 1
La norme C15 100 définit deux autres schémas de liaison à la terre, le schéma IT et le	schéma TN.
SCHEMA IT	
Qu'indiquent les lettres IT ?	
1 ^{ère} lettre I :	/1
2 ^{ème} lettre T :	
Quelle condition est nécessaire pour réaliser une installation avec un schéma IT ?	
	/2

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 10/19

Sur le schéma ci-dessus est représenté un CPI.

Que veut dire CPI, quel est son rôle ?		
		/ 1
Quel est l'avantage d'un tel schéma de liaison à la terre pour une entreprise ?	,	
		/ 1

SCHEMA TN

Qu'indiquent les lettres TN ?

1 ^{ère} lettre T :	
	/1
2 ^{ème} lettre N :	
Il existe deux schémas de liaison à la terre TN , le schéma TN-C et le schéma TN-S. Expliquer la différence.	1
	/ 1
Représenter un schéma TN-C, avec les protections.	_
	/2

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 12/19 Donner les conditions de coupure pour les trois schémas de liaison à la terre.

	П	TN-C et TN-S	IT	/3
Coupure 1 ^{er} défaut				
Coupure 2 ^{ème} défaut				

3- ETUDE DE LA DISTRIBUTION DANS L'ATELIER DE MECANIQUE.

Dans l'atelier de mécanique sont implantés quatre machines outils, ces machines sont alimentées à partir d'un canalis KN. Le canalis est suspendu sur tige filetée.

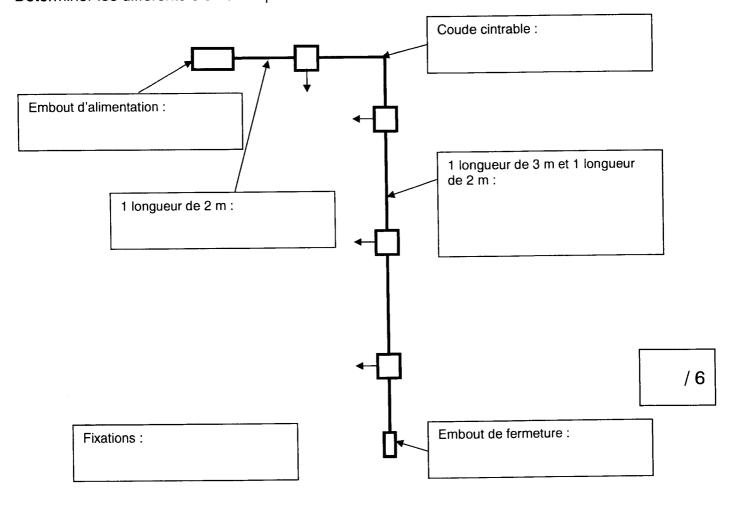
A l'aide des caractéristiques des machines de l'atelier et des documents constructeurs, vous devez retrouver l'ensemble du matériel nécessaire à la réalisation du canalis. **Question 3** Chaque départ sera protégé par des fusibles.

Alimentation du canalis en 230/400V

Compléter le tableau : à partir du dossier ressources retrouver les intensités des machines.

Intensités Machines à moteur Puissances triphasé 4 kW 1 2 7,5 kW 5,5 kW 3 11 kW 4

Brevet Professionnel: Installations et Equipements Electriques E1 : Etude en vue de la préparation

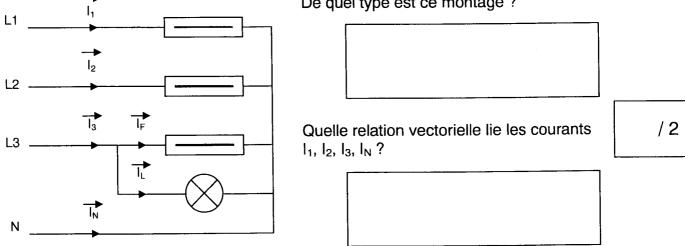

Session 2007 DR: 13/19

/2

Déterminer le courant d'emploi du canalis.

Calibre du canalis :

Déterminer les différents éléments qui constituent l'ensemble de la canalisation.


Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 14/19

ETUDE DE L'ECLAIRAGE DE L'ATELIER DE FABRICATION.

L'éclairage de l'atelier de fabrication est assuré par des luminaires industriels 2x36 W non compensés à tubes fluorescents (facteur de puissance 0,5) et des lampes à incandescence dans le hall exposition.

La distributio	n de l'éclairage	est triphasée (réseau 20	30/400 V).			Question 4	1
Phase 1 : 9 ! Phase 2 : 10	uminaires luminaires	lampes de 100	-	·			/ 24	4
L1	→ 1		De q	uel type e	st ce monta	.ge ?		

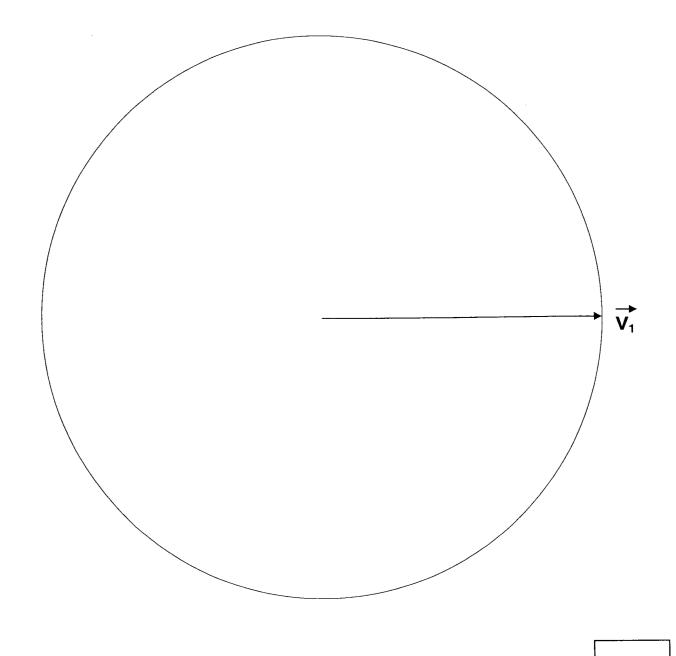
Le calibre du disjoncteur de protection du circuit d'éclairage est 10 A.

Vérifier s'il est adapté au circuit (déterminer les intensités dans chaque phase).

Luminaires phase 1		
Luminaires phase 2		/6
Luminaires phase 3		
Lampes phase 3		

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

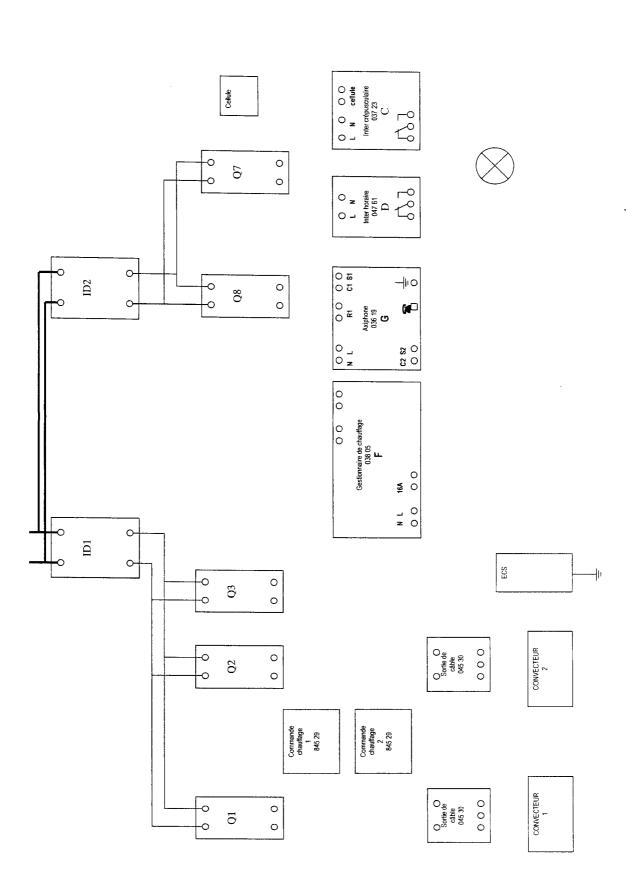
Session 2007


DR: 15/19

Déterminer graphiquement l'intensité du courant dans la ph	ase 3.	
	$\overline{V_3}$	
		/ 6
Valeurs des intensités I ₁ , I ₂ , I ₃ .		
Le calibre du disjoncteur est-il adapté	OuiNon	(entourer la réponse)
L'intensité du courant dans le conducteur neutre est-elle nu Justifier la réponse.	uleNon	(entourer la réponse)
	·	
		/4

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 16/19 Déterminer graphiquement l'intensité du courant dans le fil neutre.


Placer sur le graphique les vecteurs représentant les tensions V_2 et V_3 (système de tension direct). Placer les vecteurs représentant les intensités I_1 , I_2 et I_3 par rapport aux tensions V_1 , V_2 et V_3 .

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 17/19

Avec les documents ressources et les notices techniques représenter le schéma multifilaire des départs Q1, Q2, Q3, Q7, Q8.

/ 20

Question 5

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

6- ANGLAIS TECHNIQUE

TELEVARIATEUR INCANDESCENT HALOGENE

Préciser si les affirmations suivantes sont vraies ou fausses. Justifier la réponse en relevant les phrases du texte en anglais (2 points).

Cet appareil fonctionne uniquen	nent par commande à distanc	ce.	
		vrai	faux
Il est conseillé d'utiliser des lam	pes et transformateurs identi	ques.	-
		vrai	faux
		Rayer la mau	vaise réponse
Caractéristiques techniques. Tr			ot authorised.
Relier les mots en français ave	c leur équivalent en anglais (2	2 points).	
Appareil	dimming		
Commande à distance	remote control		Question 6
Variation	power		/ (
Puissance	device		

Brevet Professionnel : Installations et Equipements Electriques E1 : Etude en vue de la préparation

Session 2007 DR: 19/19