

Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Exercice 1

N° de la question		Éléments de réponse			Poi	int
1. a)	$E(p) = \frac{1}{p} \text{ donc}$	$E(p) = \frac{1}{p} \text{ donc } S(p) = \frac{1}{p(1+2p)}.$				
	On peut procéde	par identificatio	n :			
1. b)	$\alpha p + \beta p + \frac{\alpha}{2}$					
	$\frac{\alpha}{p} + \frac{\beta}{p+\frac{1}{2}} = \frac{\alpha p + \beta p + \frac{\alpha}{2}}{p\left(p+\frac{1}{2}\right)} = \frac{p(2\alpha+2\beta)+\alpha}{p(2p+1)}.$					2
	2 (2)					
	Day lastana inna		luit que $\alpha = 1$ et β		•	
1. c)	Par lecture inverse de la table des transformées de Laplace, on déduit de ce qui précède que :					
	$s(t) = U(t) - U(t)e^{-\frac{t}{2}}.$					2
	On acceptera un résultat cohérent avec les valeurs de α et de β obtenues par le					
			à la question précé			
2. a)	$F(z) = H\left(\frac{10z - 10}{z + 1}\right) = \frac{1}{1 + \frac{20z - 20}{1 + 20z - 20}} = \frac{z + 1}{21z - 19}.$					1
	$(z+1)$ $1+\frac{20z-20}{z+1}$ $21z-19$					
	Pour tout entier naturel n , on a $x(n) = U(0,2n) = 1$.					,5
2. b)	_					J
	La suite x est la	te x est la suite échelon unité et, par conséquent, $X(z) = \frac{z}{z-1}$.	0,:	0,5		
	En calculant $Y(z)$ on obtaint $Y(z) = H(z) \times Y(z) = z^2 + z$					
	En calculant $Y(z)$, on obtient $Y(z) = H(z) \times X(z) = \frac{z^2 + z}{(21z - 19)(z - 1)}$.					
	Or $z = 20$ $z = z^2 + z$ at le l'égalité proposée est vérifiée					
2. c)	Or $\frac{z}{z-1} - \frac{20}{21} \frac{z}{z - \frac{19}{21}} = \frac{z^2 + z}{(z-1)(21z-19)}$ et le l'égalité proposée est vérifiée.					
						5
	On en déduit, par lecture inverse de la table des transformées en Z, que, pour tout					_
	entier naturel n :					
	$y(n) = 1 - \frac{20}{21} \left(\frac{19}{21}\right)^n.$					
	$\begin{bmatrix} n \\ 0 \end{bmatrix}$	y(n)	t = 0.2n	s(t)		
	1	0,048	0	0,095		
3.	5	0,138	0,2	0,393		
	10	0,650	2	0,632		
	15	0,788	3	0,777		
	20	0,788	4	0,865	1	1
	25	0,922	5	0,918		
	50	0,994	10	0,918		
	On notera la question en cohérence avec les résultats obtenus par le candidat.					
		-1	TOTAL		11	
	TOTAL					

CRDP Aquitaine

Exercice 2

N° de la question	Éléments de réponse			
A. 1.	$f(t) = \begin{cases} 2t & \text{si } 0 \le t < 1\\ t+1 & \text{si } 1 \le t < 2\\ 3 & \text{si } 2 \le t < \frac{5}{2} \end{cases}$	1,5		
A. 2.	$0,5 \text{ sur l'intervalle } \left[0; \frac{5}{2}\right], 0,5 \text{ pour la parité, } 0,5 \text{ pour la périodicité}$			
B. 1.	$a_0 = \frac{1}{5} \int_{-\frac{5}{2}}^{\frac{5}{2}} f(t) dt = \frac{2}{5} \int_{0}^{\frac{5}{2}} f(t) dt = \frac{2}{5} \left[\left[E \frac{t^2}{2} \right]_{0}^{1} + \left[(3 - E) \frac{t^2}{2} + (2E - 3)t \right]_{1}^{2} + \left[3t \right]_{2}^{\frac{5}{2}} \right]$ $a_0 = \frac{2}{5} (E + 3)$ 0,5 point pour poser le calcul 1 point pour l'obtention des intégrales par le calcul ou par des considérations graphiques 0,5 point pour réduire On acceptera un calcul direct d'aires.	2		
B. 2.	Les b_n sont tous nuls car la fonction f est paire.			
B. 3. a)	$\int_{0}^{1} t \cos\left(\frac{2n\pi}{5}\right) dt = \frac{5}{2n\pi} \sin\left(\frac{2n\pi}{5}\right) + \frac{25}{4n^{2}\pi^{2}} \left(\cos\left(\frac{2n\pi}{5}\right) - 1\right)$ 0,5 point pour la méthode: amorcer l'intégration par parties $1 \text{ point pour } \frac{5}{2n\pi} \left[t \sin\left(\frac{2n\pi}{5}t\right)\right]_{0}^{1} - \frac{5}{2n\pi} \int_{0}^{1} \sin\left(\frac{2n\pi}{5}t\right) dt$			
B. 3. b)	On ne s'attachera pas au calcul final, le résultat est donné dans l'énoncé. Déduction de a_n			
B. 4. a)	$a_5 = \frac{5}{25\pi^2} [(2E - 3)\cos(2\pi) + (3 - E)\cos(4\pi) - E] = 0$			
B. 4. b)	$\frac{5}{9\pi^{2}} \left[(2E - 3)\cos\left(\frac{6\pi}{5}\right) + (3 - E)\cos\left(\frac{12\pi}{5}\right) - E \right] = 0$ $E_{0} = \frac{3\cos\left(\frac{6\pi}{5}\right) - 3\cos\left(\frac{12\pi}{5}\right)}{2\cos\left(\frac{6\pi}{5}\right) - \cos\left(\frac{12\pi}{5}\right) - 1}$ $E_{0} \approx 1,15 \text{ à } 10^{-2} \text{ près}$			
	TOTAL	9		

CRDP Aquitaine