Baccalauréat Professionnel

TRAVAUX PUBLICS

Session 2008

DOSSIER RESSOURCES

Projet:

CHEMIN RURAL N° 79

Les d	ocuments ressources spécifiques à la sous-épreuve E.11 (unité U.11)	Pages
DR1	□ Extraits du GTR : sols fins	17/19
DR2	□ Regards-Tuyaux-Tranchées	18/19
DR3	□ Elingues	19/19

CLASSIFICATION

DES SOES

(CLASSES

FT 8008

CLASSES)

TRAWAUX DE TERRASSEMENT

ILI TERRASSEMENTS ROUTLERS (II)

M PARAMÈTRES RETENUS POUR LA CLASSIFICATION DES SOLS

Voir également chapitre 38 « Essais de laboratoire ».

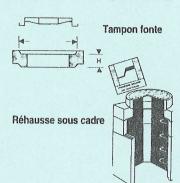
- Paramètres de nature
- la granularité : le D_{max}
- l'argilosité : l'indice de plasticité l_p
- la valeur de bleu de méthylène VBS
- · Paramètre d'état
- l'état très humide (th)
- l'état humide (h)
- l'état d'humidité moyenne (m)
- l'état sec (s)
- l'état très sec (ts)
- Paramètres de comportement mécanique
- coefficient Los Angeles (LA) (NF P 18-573)
- coefficient micro-Deval en présence d'eau (M_{DF}) (NF P 18-572)
- coefficient de friabilité des sables (FS) (NF P 18-576)

M SOLS FINS (CLASSE A, SOLS FINS)

		Olas	sement selon la nature	Classement selon:l'état hy	drique
ole natione	netres : niveaul de lication 2°	Sous; elasse Onction de la nature	Garactères principaux	Paramètres et valeurs de seuis retenus de la	sous classe
		A ₁ Limons peu	Ces sols changent brutalement de consistance pour de faibles variations de teneur en eau, en particulier lorsque leur W_n est	IPI ≤ 3 ou $W_n \ge 1,25 W_{OPN}$	A ₁ th
	VBS ≤ 2,5 ou I _p ≤ 12 plastiques, lœss, silts alluvion- naires, sables fins peu pol- lués, arènes peu plas-	BS < 2.5 læss, silts	proche de W _{OPN} . Le temps de réaction aux variations de l'en- vironnement hydrique et climatique est relativement court, mais la perméabilité pouvant varier dans de larges limites	$3 < IPI \le 8 \text{ ou}$ 1,10 W _{OPN} \le W _n $<$ 1,25 W _{OPN}	A ₁ h
		naires, sables fins peu pol-	selon la granulométrie, la plasticité et la compacité, le temps de réaction peut tout de même varier assez largement. Dans	$8 < IPI \le 25 \text{ ou}$ $0.9 \text{ W}_{OPN} \le \text{W}_{n} < 1.10 \text{ W}_{OPN}$	A ₁ m
		le cas de ces sols fins peu plastiques, il est souvent préférable de les identifier par la valeur de bleu de méthylène VBS,	$0.7 \text{ W}_{OPN} \le W_n < 0.9 \text{ W}_{OPN}$	A ₁ s	
		tiques	compte tenu de l'imprécision attachée à la mesure de l'I _p .	W _n < 0,7 W _{OPN}	A ₁ ts
		argileux, limons, ou argiles et d'identification le mieux adapté.	IPI \leq 2 ou lc \leq 0,9 ou $W_n \geq$ 1,3 W_{OPN}	A ₂ th	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Dès que l'I _p -atteint des valeurs ≥ 12, il constitue le critère	$2 < IPI \le 5$ ou 0,9 $< Ic \le 1,05$ ou 1,1 $W_{OPN} \le W_n < 1,3 W_{OPN}$	A ₂ h
D _{max}				$5 < \text{IPI} \le 15 \text{ ou } 1,05 < \text{Ic} \le 1,2$ ou $0,9 \text{ W}_{\text{OPN}} \le \text{W}_{\text{n}} < 1,1 \text{ W}_{\text{OPN}}$	A ₂ m
≤ 50 mm et		plastiques, arènes		$1,2 < lc \le 1,4 \text{ ou}$ $0,7 \text{ W}_{OPN} \le W_n < 0,9 \text{ W}_{OPN}$	A ₂ s
tamisat à 80 µm				lc > 1,4 ou W _n < 0,7 W _{OPN}	A ₂ ts
> 35 %			Ces sols sont très cohérents à teneur en eau moyenne et faible, et collants ou glissants à l'état humide, d'où difficulté	IPI ≤ 1 ou Ic ≤ 0,8 ou W _n ≥ 1,4 W _{OPN}	A ₃ th
	25 < I_p ≤ 40 ou 6 < VBS	≤ 40 Argiles et argiles	Une augmentation de teneur en eau assez importante est	$1 < IPI \le 3$ ou $0.8 < Ic \le 1$ ou 1.2 $W_{OPN} \le W_n < 1.4$ W_{OPN}	A ₃ h
				$3 < IPI \le 10$ ou $1 < Ic \le 1,15$ ou $0.9 \text{ W}_{OPN} \le \text{W}_{n} < 1.2 \text{ W}_{OPN}$	A ₃ m
	≤8			1,15 < lc < 1,3 ou 0,7 W _{OPN} ≤ W _n < 0,9 W _{OPN}	A ₃ s
				lc > 1,3 ou W _n < 0,7 W _{OPN}	A ₃ ts
		A ₄ Argiles et	Ces sols sont très cohérents et presqu'imperméables : s'ils changent de teneur en eau, c'est extrêmement lentement et	Valeurs seuils des paramètres d'état, à définir à l'appui d'une	A ₄ th
	l _p > 40 ou	argiles	avec d'importants retraits ou gonflements. Leur emploi en remblai ou en couche de forme n'est normalement pas envi-	étude spécifique	A ₄ h
	VBS > 8	sagé mais il peut éventuellement être décidé à l'ar			A ₄ m
		plastiques	vraie grandeur.		A ₄ s

Les paramètres inscrits en caractères gras sont ceux dont le choix est à privilégier.

(1) TEXTES EXTRAITS, AVEC L'AUTORISATION DE L'ADMINISTRATION, DES FASCICULES 1 ET 2 DU GUIDE TECHNIQUE « RÉALISATION DES REMBLAIS DES COUCHES DE FORME » COÉDITÉ PAR LE LCPC ET LE SETRA.

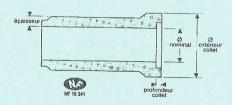

ELEMENT DE REGARD CARRE

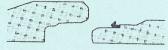
H (cm)	Poids (kg)
Tampon béton	66
Réhausse ss cadre H 10	65
H 15	100
H 20	131
H 25	165

Réhausse pour feuillure ronde - 4 trous de brochage.

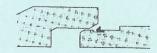
CARACTÉRISTIQUES TECHNIQUES:

- les réhausses sous cadres et dalles réductrices ont
 4 trous pour la fixation des cadres en fonte,
- le jointement est réalisé de préférence avec du boudin impermastique Ø 30.




TUYAU ARME POUR L'ASSAINISSEMENT Ø 300 à Ø 1200

Sabla sabla


Caractéristiques communes :

- longueur utile : 2,36 m
- assemblage type joint confiné glissant, pose avec pâte à joint SABLA.

Assemblage type H5.

Assemblage type H2.

Ø nominal		135 A		Col	let		Charg. d'essais	Prix
(mm) Ep. (cm)	Pds du tuyau (kg)	Pds au mètre (kg)	Ø extérieur (cm)	Prof. (cm)	Type assemblage	daN/m 135 A	(ml) 135 A	
300	4,4	345	141	50,3	9,5	H5	4050	
400	4,7	485	198	61,6	9,5	H5	5400	1
500	5,9	705	288	74	9,5	H5		all all
600	5,7	839	343	88,6	10	H5	6750	Nous consulter
800	8.7	1630	665	113	11,5		8100	S
1000	11	2401	980	136,6		H5	10800	no
1200	12.5	3190	1302		13	H5	13500	2
.200	12,0	3190	1302	159,2	11,75	H2	16200	

Séries spéciales : 165 A, 200 A, 250 A sur commande.

LARGEUR MINIMALE DE LA TRANCHÉE EN FONCTION DU DIAMÈTRE NOMINAL DN

DN	Largeur m	inimale de tranchée (((m)	DD + X) (1)	
(mm)	Tranchée blindée	Tranchée non blindée		
	Trancice bilingee	β > 60°	β ≤ 60°	
DN ≤ 225	OD + 0.40	OD	0+0,40	
$225 < DN \le 350$	OD + 0.50	OD + 0.50	OD 0,40	
$350 < DN \le 700$	OD + 0.70	OD + 0.70	00+0.40	
700 < DN ≤ 1 200	OD + 0.85	OD + 0.85	OD + 0.40	
1 200 < DN	OD + 1,00	OD + 1,00	OD + 0,40	

(1): Dans les valeurs OD + X, l'espace de travail minimal entre le tuyau et la paroi de la tranchée ou le blindage est égal à X/2; OD est le diamètre extérieur exprimé en mètres;

Elingues

ELINGUE CHAINE 2 BRINS

(€ Réf 4300 à 4327

Pour définir vos élingues indiquer : la REFERENCE, le CODE et la longueur "L" à la demande Chaîne et accessoires en acier à haute résistance Coefficient d'utilisation 4/1

charge maximale d'utilisation

La fabrication, les méthodes de calculs, d'essais et de certification des élingues chaîne sont désormais soumises à une norme européenne harmonisée (EN 818-4) qui vient à l'appui des exigences essentielles de la directive machine 98/37/CEE.

Les charges maximales d'utilisation présentées (entre 0 et 90°) sont données pour des applications générales de levage. Pour des utilisations autres, se référer au début du catalogue ou nous consulter pour en faire l'étude.

2 crochets régl standards 2 cr	F 4301 able à ochets ndards	co 2 à ve	éf 4305 des X à F crochets errouillag omatique	e	Réf 430 codes X réglable 2 croche verrouilla auto.	à F à ts	Réf codes 2 cro- verrou au à to	AàD thets tillage to.	code régl 2 cr	4308 s A à D able à ochets touret
8				L		L		8		
CODE	х	Α	AA	В	С	D	E	F	G	J
diam chaîne en mm	6	7	8	10	13	16	20	22	26	32
C.M.U kg facteur 1,4	1600	2120	2800	4250	7500	11200	17000	21200	30000	45000
C.M.U kg facteur 1	1120	1500	2000	3150	5300	8000	12500	15000	21200	31500
réf anneau haut 5055	Α	С	D	E	F	G	I	J	K	HA225
réf anneau bas 5055	Α	С	С	D	Е	F	Н	I	J	K
réf crochet standard	5120A	5097B	5097B	5097C	5097D	5097E	5097F	5097G	5097H	5097J
réf crochet à V.A	5157A	5157B	5157B	5157C	5157D	5157E	5157F	5157FA	-	-
réf crochet à V.A à touret	5158A	5158B	5158B	5158C	5158E	5158F	5158G	-	-	-
rer crocifet a V.A a touret										
réf crochet de fonderie	Mo s	5099B	5099C	5099D	5099E	5099F	5099G	5099H	50991	-
	- 5117B	5099B 5117B		5099D 5117C				5099H 5117G	5099I 5117H	- 5117I
réf crochet de fonderie	- 5117B -	5117B	5117B		5117D	5117E			ARTA RAPPAGA	- 5117I -

Angle d'utilisation Facteur d'élinguage	0°< α≤ 90° Factour 1,4	90°< α ≤ 120° Facteur 1
Type d'utilisation		
Nombre de brins	Deux	Brine

CROCHET A OEILS	TANDAF	D POUR	ELINGUE	CHAINE		In	Réf 5097
Pour définir vos crochets in Acier allié haute résistance Coefficient d'utilisation 1/4 Avec linguet de sécurité	diquer : la	REFERENCE	GRADE		18	m	
CODE	A	В	c	D	E	OF FUEL	G
C.M.U verticale en kg	À 1120	B 2000	c 3150	D 5300	8000	F 10000	G 12500
	000000000000000000000000000000000000000	A STATE OF THE PARTY OF THE PAR	Market and American and	CALLED SHARE THE RESERVE AND ADDRESS OF THE PERSON OF THE	****		Annual Control of the
C.M.U verticale en kg pour chaîne diam en	1120	2000	3150	5300	8000	10000	12500
C.M.U verticale en kg pour chaîne diam en mm	1120 6	2000 B	3150 10	5300 13	8000 16	10000 18	12500 20