BACCALAURÉAT PROFESSIONNEL CONSTRUCTION BÂTIMENT GROS ŒUVRE

- Session 2008 -

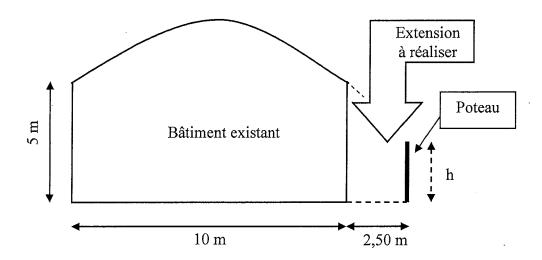
* * *

Épreuve E 1 Scientifique et Technique

Sous-Épreuve B 1 – Unité U 12 –

Mathématiques et Sciences Physiques

Coefficient: 2


Durée : 2 heures

Remarque:

- * La clarté des raisonnements et la qualité de la rédaction seront prises en compte à la correction.
- * L'usage des calculatrices électroniques est autorisé.
- * L'usage du formulaire officiel de mathématiques est autorisé.

MATHÉMATIQUES: (15 points)

On souhaite réaliser une extension à un bâtiment existant. Le schéma ci-dessous représente une vue en coupe du bâtiment.

Les toitures de l'extension et du bâtiment existant se raccordent de façon harmonieuse.

L'extension doit satisfaire les exigences suivantes :

- les poteaux soutenant la toiture de l'extension se situent à 2,50 m du mur existant,
- la hauteur h des poteaux doit être supérieure à 2,10 m.

PARTIE 1: Étude du profil du bâtiment existant

En annexe 1, à rendre avec la copie, le plan est rapporté au repère d'unité graphique 1 cm. La courbe (\mathcal{G}) représentée dans ce repère est une portion de la parabole d'équation $y = -0.1x^2 + x + 5$

- 1 Placer le point A de (\mathcal{P}) d'abscisse 0.
- 2 Placer le point C de (\mathcal{G}) d'abscisse 10.

L'arc de parabole AC représente le profil de la toiture du bâtiment existant, à l'échelle 1/100°.

- 3 Avec la précision permise par le graphique, déterminer graphiquement les coordonnées du sommet *B* de la parabole.
- 4 En déduire la hauteur maximale du bâtiment existant.

PARTIE 2 : Étude de deux profils possibles de la toiture de l'extension

On considère la fonction f de variable réelle x définie sur [0; 13,7] par : $f(x) = -0.1x^2 + x + 5$

1 - Premier cas : Prolongement de la toiture selon le même profil parabolique

La droite (\mathfrak{D}) représentée, dans le plan rapporté au repère défini en annexe 1, a pour équation x = 12,5.

- 1.1 Avec la précision permise par le graphique, déterminer graphiquement les coordonnées de F, point d'intersection de (\mathcal{P}) et (\mathcal{D}) .
- 1.2 Calculer f(12,5).
- 1.3 Dans ce cas, en déduire la hauteur d'un poteau.

2 - Deuxième cas: Prolongement de la toiture selon un profil linéaire

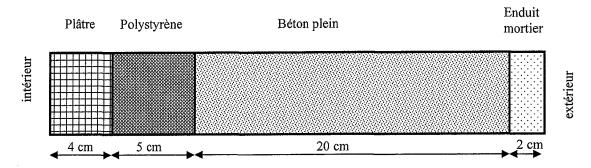
- 2.1 f' est la fonction dérivée de la fonction f. Déterminer f'(x).
- 2.2 Calculer f'(10).
- 2.3 Justifier que la droite (\Im) d'équation y = -x + 15 est tangente à la courbe (\Im) au point C d'abscisse 10.
- 2.4 Tracer la tangente (\Im) au point C dans le plan rapporté au repère de l'annexe 1 (à rendre avec la copie).
- 2.5 Placer le point E, intersection des droites (\mathfrak{I}) et (\mathfrak{D}).
- 2.6 Déterminer, en faisant apparaître un calcul, l'ordonnée du point E.
- 2.7 Dans ce cas, en déduire la hauteur d'un poteau.

3 - Exploitation des résultats

Ouel profil doit-on choisir pour satisfaire les exigences données dans l'énoncé ? Justifier la réponse.

PARTIE 3: Calcul de la longueur du profil du toit de l'extension

Dans le plan rapporté au repère de l'annexe 1 (à rendre avec la copie), on donne C (10; 5) et E (12,5; 2,5)


- 1 Déterminer les coordonnées du vecteur \overrightarrow{CE}
- 2 Calculer $\parallel \overrightarrow{CE} \parallel$
- 3 En déduire, la longueur du toit représenté par [CE] sur le graphique. Exprimer le résultat en mètre, arrondi au centième.

0806-CBG ST B

SCIENCES-PHYSIQUES: (5 points)

EXERCICE Nº 1: (3,5 points)

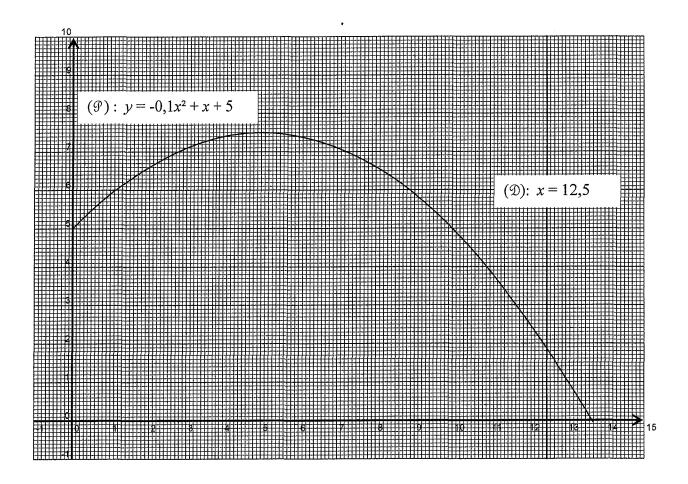
Le schéma ci-dessous représente la coupe d'un des murs du bâtiment précédent.

- 1 Comment appelle t-on le mode de transfert de la chaleur à travers une paroi ?
- 2 À l'aide des informations données en annexe 2 (à rendre avec la copie), justifier que la somme des résistances superficielles de cette paroi est 0,39 m² °C/W.
- 3 Sur l'annexe 2, à rendre avec la copie,
 - 3.1 compléter la ligne correspondant au béton plein.
 - 3.2 calculer la résistance thermique totale R_T du mur en m² °C/W.
- 4 En déduire le coefficient de transmission thermique U en W/m² °C. Arrondir le résultat au dixième.
- 5 On estime que l'isolation est correcte si U est inférieur à 0,6 W/m² °C. Cette paroi respecte-t-elle cette condition ?

Données: La résistance totale est égale à la somme de toutes les résistances.

$$R = \frac{e}{\lambda}$$
 en m² °C/W. $U = \frac{1}{R}$ en W/m² °C

EXERCICE N° 2: (1,5 point)


L'éclairage du bâtiment est assuré par des lampes à halogène de type 12V / 1,8 A. Le fonctionnement de ces lampes nécessite des transformateurs, alimentés sous une tension de 230V.

- 1 Calculer le rapport m de transformation. Arrondir le résultat au centième.
- 2 Recopier sur la copie les bonnes affirmations :
 - * ces transformateurs sont des élévateurs de tension.
 - * ces transformateurs sont des abaisseurs de tension.
- 3 Parmi les propositions suivantes, recopier sur la copie le nom du dispositif qui protège le matériel électrique en cas de surintensité.
 - * le disjoncteur différentiel associé à la prise de terre.
 - * le fusible.
 - * le compteur.

Données:
$$m = \frac{U_2}{U_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2}$$

ANNEXE 1 (à rendre avec la copie)

MATHÉMATIQUES

SCIENCES-PHYSIQUES

ANNEXE 2 (à rendre avec la copie)

Résistances superficielles d'échange :

Désignation	Paroi en contact avec : - un autre local chauffé - un comble - un vide sanitaire	Paroi en contact avec : - l'extérieur - un passage ouvert - un local ouvert	
MUR	0,22 m² °C/W	0,17 m ² °C/W	
TOIT	0,18m² °C/W	0,14 m² °C/W	

Résistances thermiques de quelques matériaux :

Matériaux	Conductivité thermique λ (W/m °C)	
Polystyrène	0,037	
Mortier pour enduit	1,15	
Parpaing	0,80	
Plâtre	0,35	
Briques	1,15	
Béton cellulaire	0,33	
Béton plein	1,75	
Béton caverneux	0,70	
Béton cellulaire	0,33	

Tableau à compléter (les résultats seront arrondis au millième)

Matériaux	Epaisseur <i>e</i> en m	Conductivité thermique λ en W/m °C	Résistance thermique R en m² °C/W
$R_{si} + R_{se}$			0,39
Plâtre	0,04	0,35	0,114
Polystyrène	0,05	0,037	1,351
Béton plein			
Mortier pour enduit	0,02	1,15	0,017
			$R_T =$

0806-CBG ST B

FORMULAIRE BACCALAUREAT PROFESSIONNEL Artisanat, Bâtiment, Maintenance - Productique

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
1	_ 1
$\frac{-}{x}$	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : ln

$$\overline{\ln(ab)} = \ln a + \ln b$$

$$\ln\left(a^{n}\right) = n \ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$ $\Delta = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang 1 : u_1 et raison q

Terme de rang $n: u_n = u_I.q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$cos(a+b) = cosa cosb - sina sinb$$

$$\cos 2a = 2\cos^2 a - 1$$

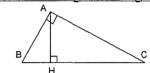
$$= 1 - 2 \sin^2 a$$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$


Variance

$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

$$\sin \widehat{B} = \frac{AC}{BC}$$
; $\cos \widehat{B} = \frac{AB}{BC}$; $\tan \widehat{B} = \frac{AC}{AB}$

Résolution de triangle
$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc\sin \hat{A}$

Trapèze : $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume BhSphère de rayon R:

Aire: $4\pi R^2$

Volume : $\frac{4}{3} \pi R^3$

Cône de révolution ou pyramide de base B et de

hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\frac{\vec{v} \cdot \vec{v}' = xx' + yy'}{\|\vec{v}\| = \sqrt{x^2 + y^2}}$$

$$|\vec{v}.\vec{v}' = xx' + yy' + zz'$$

$$||\vec{v}|| = \sqrt{x^2 + y^2 + z^2}$$

Si $\vec{v} \neq \vec{0}$ et $\vec{v}' \neq \vec{0}$:

$$\vec{v} \cdot \vec{v}' = ||\vec{v}|| \times ||\vec{v}'|| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$