BACCALAUREAT PROFESSIONNEL MAINTENANCE DES VEHICULES AUTOMOBILES Session 2008

Options: A, B, C, D

Nature de l'épreuve : E 1 : Epreuve scientifique et technique

Sous-épreuve E11 : Analyse d'un système technique

Unité U11

Epreuve écrite - coefficient : 2 - durée : 3 heures

FREIN DE PARKING AUTOMATISE F. P. A.

Sommaire général du sujet :	Repères documents
Dossier Ressource :	DR 1 / 12 à DR 12 / 12
Dossier Travail:	DT 0 / 14 à DT 14 / 14

Conseils aux candidats:

Lire attentivement le sujet et se reporter, chaque fois que cela est nécessaire aux documents ressources.

Vous devez répondre sur les documents pré-imprimés.

AUCUN DOCUMENT SUPPLEMENTAIRE N'EST AUTORISE

Examen: BACCALAUREAT PROFESSIONNEL	Options: A, B, C, D	Session	: 2008
Spécialité : Maintenance des Véhicules Automobiles	Code: 0806-MV ST 11	Durée : 3 h	Coef. : 2
Épreuve : E1 - Épreuve scientifique et technique	Unité : U11		

BACCALAUREAT PROFESSIONNEL MAINTENANCE DES VEHICULES AUTOMOBILES Session 2008

Options: A, B, C, D

Nature de l'épreuve : E 1 : Epreuve scientifique et technique

Sous-épreuve E11 : Analyse d'un système technique

Unité U11

Epreuve écrite - coefficient : 2 - durée : 3 heures

FREIN DE PARKING AUTOMATISE F. P. A.

DOSSIER TRAVAIL

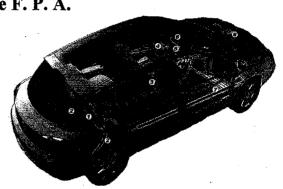
Barème de notation	Page 0/14	
1 ^{ère} partie : Ensemble du système F.P.A.	Page 1/14 à page 3/14	/ 22
2 ^{ème} partie : Boîtier de commande	Page 4/14 à page 6/14	/31
3 ^{ème} partie : Déverrouillage de secours	Page 7/14 à page 9/14	/ 15
4 ^{ème} partie : Moteur électrique et réducteur	Page 10/14 à page 13/14	/ 29
5 ^{ème} partie : Câbles de frein de parking	Page 14/14	/3
	TOTAL	/100

Examen: BACCALAUREAT PROFESSIONNEL	Options: A, B, C, D	Session: 2008
Spécialité : Maintenance des Véhicules Automobiles	Code: 0806-MV ST 11	Durée : 3 h Coef. : 2
Épreuve : E1 - Épreuve scientifique et technique	Unité : U11	

FREIN DE PARKING AUTOMATISE (F. P. A.)

L'étude du système F.P.A., scindée en 5 parties, a pour but l'étude de certaines solutions technologiques et la validation de certaines données « constructeur »

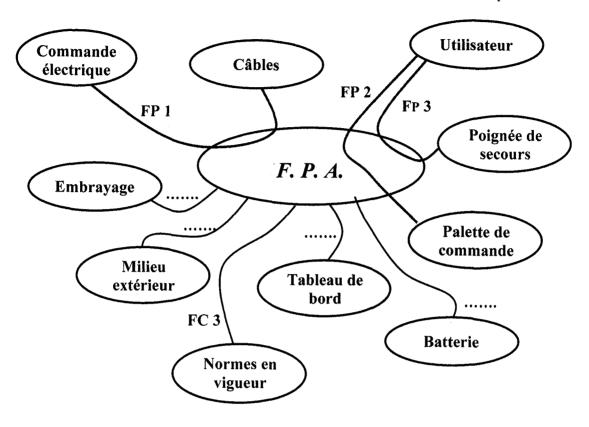
1ère PARTIE


Analyse globale de l'ensemble du système F. P. A.

Objectifs:

Appréhender les différents éléments du système. Comprendre le fonctionnement global du F.P.A.

Documents ressources DR 1/12 à DR 5/12.



On demande:
1-1 / Citez les deux conditions pour la mise en œuvre du frein de parking. (voir DR 4/12)
1-2 / Citez, hormis sa fonction principale, deux autres avantages de ce système pour le conducteur. (voir DR 2/12)
1-3 / Donnez la vitesse en dessous de laquelle le conducteur peut utiliser la fonction « frein dynamique ». (voir DR 4/12)
1-4 / Donnez la raison pour laquelle le desserrage manuel du F.P.A. nécessite deux actions simultanées de la part du conducteur. (voir DR 2/12)
1-5 / Citez à quelle autre situation, présentée dans le « tableau des stratégies », on peut assimiler un démarrage en côte. (voir DR 4/12)

1-6 / On donne ci-dessous le diagramme des interactions ainsi que le tableau récapitulatif des différentes fonctions correspondantes.

On demande:

1-6-1 / Reportez, sur le diagramme ci-dessous, les références manquantes.

1-6-2 / Complétez le tableau.

FP 1 Actionner automatiquement le frein de parking (F. P. A.).		
Permettre à l'utilisateur de mettre en œuvre manuellement de parking (F. P. A.).		
FP 3		
FC 1	Permettre le desserrage du frein en fonction de la position de l'embrayage.	
FC 2	Alimenter l'ensemble en énergie électrique.	
FC 3		
FC 4	Résister aux agressions du milieu extérieur.	
FC 5	Signaler au tableau de bord l'état du frein de parking ou les disfonctionnements éventuels.	

Examen: BAC PRO MVA Unité: U11	Dossier Travail	Session 2008	DT:2/14
	Dobbiel Havall	Dession 2006	D1.#/14

1-7 / Reportez sur chaque liaison électrique ou mécanique, à l'aide du tableau précédent, comme le montre l'exemple, la référence de la fonction correspondante. (voir DR1/12 et DR 7/12)

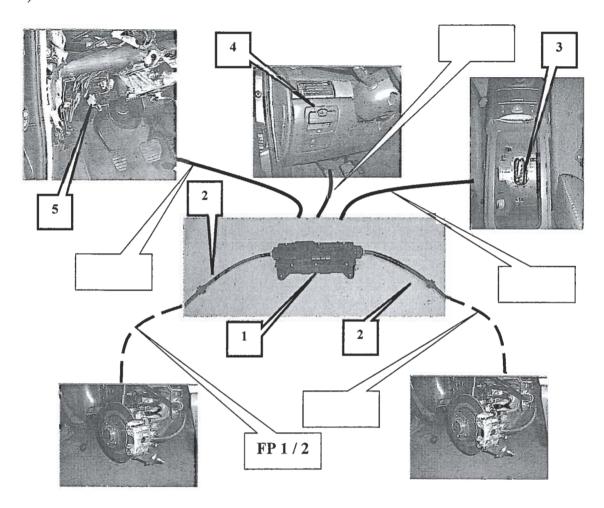


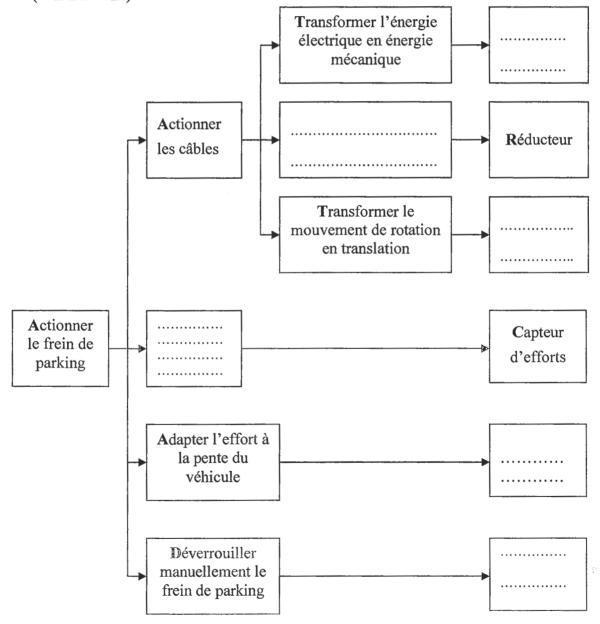
Figure 1

(voir DR 2/12 et DR 4/12)	
1	
Inscrivez ci-dessous, l'élément qui permet d'adapter automatiquement la force de à la pente. (voir DR 4/12)	le

2ème PARTIE

Analyse fonctionnelle du boîtier de commande

Objectifs:

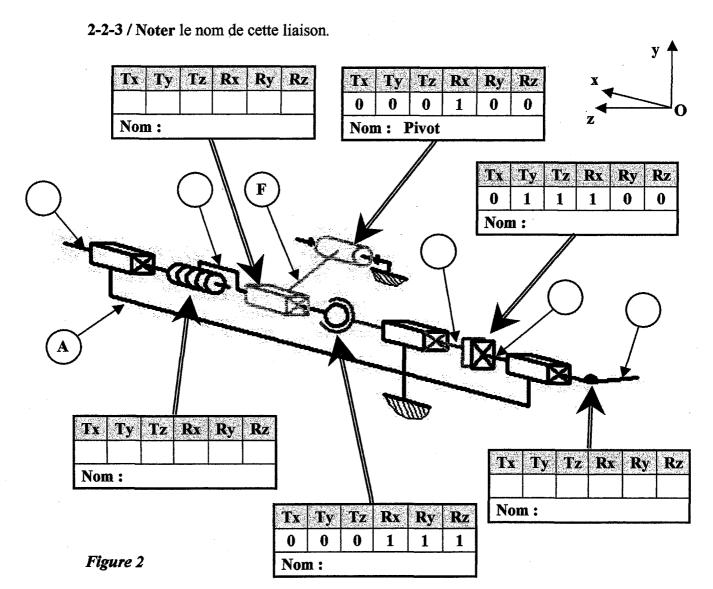

Appréhender le fonctionnement du « boîtier de commande ».

On donne:

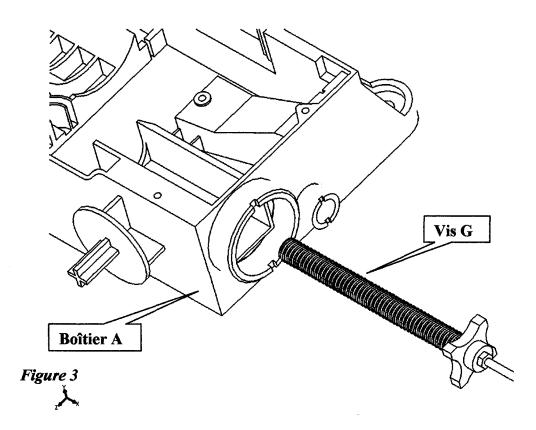
Documents ressources DR 5/12 à DR 9/12

On demande:

2-1 / Complétez, à l'aide du principe de fonctionnement, le diagramme F.A.S.T. ci-dessous. (voir DR 7/12)

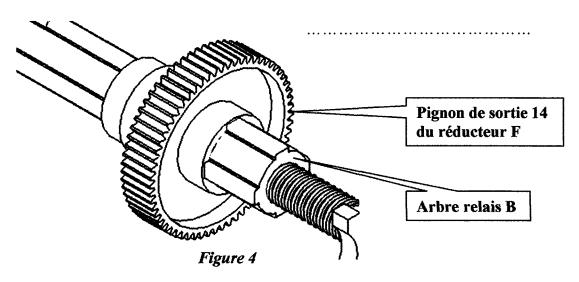


2-2 / On donne (Figure 2) ci-dessous, le schéma cinématique du boîtier sans le câble de déverrouillage de secours et la référence des divers éléments qui le composent.


Réf.	Désignation élément	Réf.	Désignation élément
A	Boîtier	E	Etrier de déverrouillage
В	Arbre relais	F	Pignon de sortie
C	Câble lié à l'étrier droit	G	Vis et câble liés à l'étrier gauche
D	Capteur d'effort		

On demande, sur le schéma (Figure 2) ci-dessous, de :

- 2-2-1 / Compléter, à partir du tableau ci-dessus, les repères manquants correspondant aux divers éléments du boîtier. (voir DR 6/12 et DR 7/12)
- 2-2-2 / Compléter pour chaque liaison concernée le tableau des mouvements relatifs. Vous porterez le chiffre 1 s'il existe un degré de liberté possible et le chiffre 0 dans le cas contraire.


2-2-4 / Colorier en vert, sur le dessin partiel ci-dessous (Figure 3), les surfaces visibles du boîtier (A) et de la vis (G) qui participent au guidage en translation.

2-2-5 / On donne ci-dessous le dessin partiel en perspective de l'assemblage entre le pignon de sortie du réducteur (F) et de l'arbre relais (B). (voir DR 7/12)

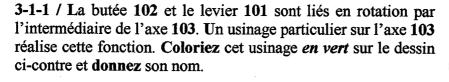
Coloriez en bleu sur cette perspective la forme visible sur l'arbre relais (B) qui lie en rotation ces deux pièces.

Examen: BAC PRO MVA Unité: U11 Dossier Travail Session 2008 DT: 6/14

3^{ème} PARTIE

Analyse comportementale du système de déverrouillage de secours.

Objectifs:


Appréhender le fonctionnement de ce système. Vérifier l'effort du conducteur lors de son utilisation.

On donne:

Documents ressources DR 5/12 à DR 8/12.

On demande:

3-1 / Etude cinématique du levier 101. (Voir dessin Figure 6, DT 8/14).

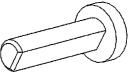


Figure 5

3-1-2 / Lorsque le conducteur tire sur le câble de déverrouillage de secours, quel est le mouvement du levier 101 par rapport à l'étrier 100. (voir DR 7/12 et DR 8/12)?

Mvt 101 / 100 :

3-1-3 / Quelle est la trajectoire T _{B 101 / 100} du point B appartenant au levier 101 dans son mouvement par rapport à l'étrier 100. (voir DR 7/12 et DR 8/12)?

T_{B101/100}:....

3-1-4 / Tracez cette trajectoire sur le dessin Figure 6 de la page suivante DT 8/14.

3-1-5 / La vitesse du câble, lors d'une action énergique du conducteur, est de 1 cm/s. Tracez la vitesse $\vec{V}_{B101/100}$ sur le dessin *Figure 6* de la page suivante DT 8/14. (voir DR 7/12 et DR 8/12)

Echelle: $1 \text{ cm} \equiv 1 \text{ mm/s}$

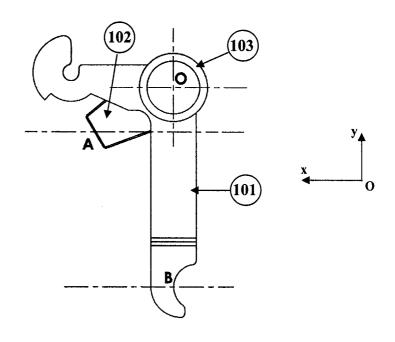


Figure 6

3-1-6 / Déterminez graphiquement la vitesse $\vec{V}_{A102/100}$, vitesse du point A appartenant à la butée 102 en mouvement par rapport au levier 100.

$$V_{A 102/100} = \dots$$

3-2 / Etude statique afin de déterminer l'effort $\vec{B}_{Co/101}$ que doit réaliser le conducteur pour déverrouiller manuellement le F.P.A. si celui-ci est au serrage maximum. (Voir DR 9/12)

Pour cela on isole l'ensemble {levier 101, butée d'arrêt 102, axe 103}

On donne:

Hypothèses:

Le poids des pièces est négligé.

L'action du ressort 104 est négligée.

On notera $\vec{B}_{Co/101}$ l'action en B du conducteur C_{O} sur le levier 101 par l'intermédiaire du câble de déverrouillage.

On notera $\vec{A}_{106/102}$ l'action en A, de l'axe 106 du capteur d'effort sur la butée d'arrêt 102. (voir DR 8/12)

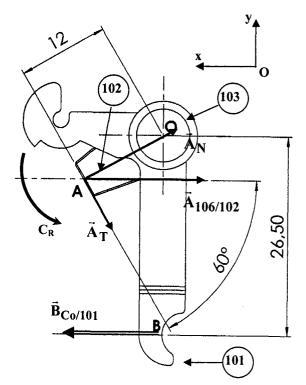
Nota: $B_{Co/101} = F_{Co}$ et $A_{106/102} = F_{T}$ (voir DR9/12).

Examen: BAC PRO MVA Unité: U11	Dossier Travail	Session 2008	DT:8/14
--------------------------------	-----------------	--------------	---------

Remarques: (voir Figure 7 ci-contre)

 $L\text{'action }\vec{A}_{106/102}$ se décompose en deux actions :

 \vec{A}_N : action normale


 $\vec{A}_{T}:$ action tangentielle

 $\begin{array}{l} L\text{`action tangentielle }\vec{A}_{T}\text{ crée un couple} \\ \text{résistant }C_{R.}, \text{lors du déverrouillage manuel.} \end{array}$

Rappel:

Couple = force x distance

On vous demande:

	3-2-1 / Calculez l'intensité de l'action tangentielle \vec{A}_T $\vec{A}_{106/102}$ correspond à la première consigne constructeur	-
		••••••
de 750	3-2-2 / L'action tangentielle \vec{A}_T correspondant à la deux N. Calculez alors le couple résistant C_R créé. (voir DR 9/	
résistar	3-2-3 / Calculez l'intensité de l'action $\vec{B}_{Co/101}$ nécessent C_R .	saire pour vaincre le couple
	3-2-4 / Que pouvez-vous en conclure ?	B Co/101 =

Examen: BAC PRO MVA Unité: U11 Dossier Travail Session 2008 DT: 9 / 14

4^{ème} PARTIE

Analyse fonctionnelle structurelle et comportementale du système moto réducteur.

Objectifs:

Appréhender le fonctionnement de ce système.

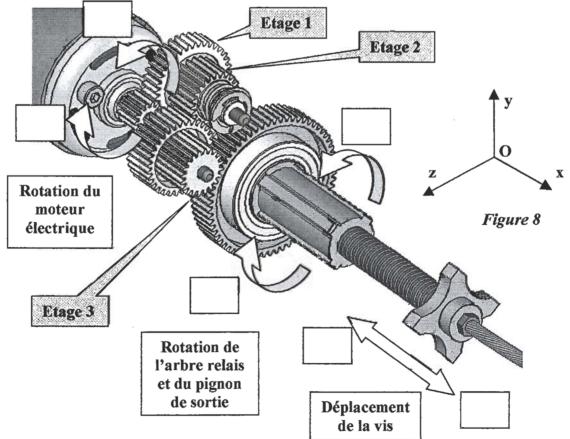
Vérifier:

- * le couple transmis à l'arbre relais
- * le temps de réponse lors de l'utilisation du frein de parking.

On donne:

Documents ressources DR 5/12 à DR 12/12.

On demande:


4-1 / Etude du réducteur.

4-1-1 / Déterminez le sens du mouvement (de translation ou de rotation) de chacun des éléments cités sur le dessin *Figure 8* ci-dessous. (voir DR 9/12, DR 10/12, DR 12/12 et *Figure 10* page DT 11/14)

Pour cela notez dans les cases vides prévues ci-dessous la lettre :

S pour le sens correspondant au serrage des câbles de frein.

D pour le sens correspondant au desserrage des câbles de frein.

Examen: BAC PRO MVA Unité: U11 Dossier Travail Session 2008 DT: 10/14

4-1-2 / Le réducteur est composé de 3 étages comme indiqué sur la *Figure 10* page DT 11/-1. Le sous ensemble ci-contre composé des pièces 8, 9, 10, 11, 12 transmet le mouvement de rotation du 1^{er} étage au 2^{ème} étage.

Ce sous ensemble, grâce à son assemblage et aux formes particulières de ces deux pignons (*Figure 11* DR 10/12) assure au sein du réducteur une autre fonction.

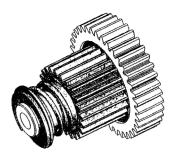
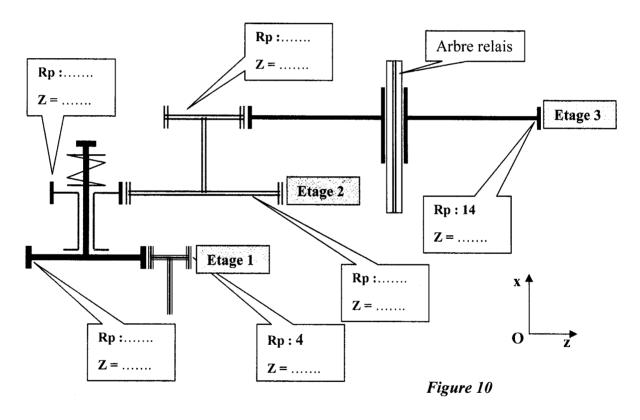



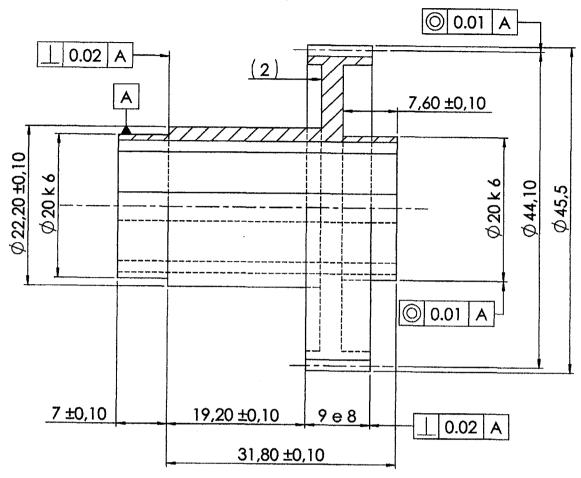
Figure 9

Dans le tableau ci-dessous rayez les mauvaises réponses.

Embrayage à friction	Accouplement élastique
Limiteur de couple	frein

4-1-3 / Complétez le dessin simplifié ci-dessous, du réducteur, en indiquant le repère et le nombre de dents de chaque pignon. (voir DR 12/12)

4-1-4 / Calculez le rapport $r=N_{14}$ / N_4 de réduction de ce réducteur. (voir DR 10/12) Calcul avec 3 chiffres après la virgule


 •••••

TO A CORD CONTRACT AND			
Examen: BAC PRO MVA Unité: U11	Dossier Travail	Session 2008	DT : 11 / 14

chiffres après la virgule 4-2-1 / Calculez le couple C 14 transmis sur la roue 14, lors d'un serrage des freins correspondant à la 1^{ère} consigne. (voir DR 9/12) 4-2-2 / Lors d'un serrage maxi du frein de parking, le couple C 14 sur la roue 14 est de 0.472 N.m. Calculez le couple C_M au niveau du moteur électrique. On prendra r = 0.078. (voir DR 10/12) 4-2-3 / Déterminez, à partir des courbes caractéristiques du réducteur, la fréquence de rotation N en tr/min de l'arbre relais lors d'un serrage maxi. (voir DR 11/12) 4-2-4 / Quelle est alors la vitesse linéaire V en mm/s de déplacement de la vis liée au câble gauche? On donne : $V = pas \times N / 60$ 4-2-5 / Calculez le temps de réponse t nécessaire pour effectuer le serrage maximum du frein de parking. On donne : $\mathbf{t} = \mathbf{C_0} / \mathbf{V}$ ($\mathbf{C_0}$: course en mm, \mathbf{V} : vitesse linéaire en mm/s et t : temps en s) 4-2-6/ Que pouvez-vous en conclure ? (voir DR 9/12)

4-2 / On se propose de vérifier le temps de réponse du frein de parking. Calculs avec 2

4-3 / Le dessin ci-dessous est extrait du dessin de définition de la roue 14 du réducteur. (voir DR 10/12 et DR 12/12)

4-3-1 / Complétez le tableau avec les spécifications correspondantes (cotes et symboles des tolérances géométriques).

Portée de roulement coté gauche	Ø	A
Portée de roulement coté droit	Ø	
Diamètre primitif de l'engrenage	Ø	

4-3-2 / Donnez la signification de chacun des termes de la spécification géométrique ci-dessous.

☐ 0.02 A →	

Examen: BAC PRO MVA Unité: U11	Dossier Travail	Session 2008	DT:13/14
--------------------------------	-----------------	--------------	----------

5^{ème} PARTIE

Analyse comportementale du câble de frein.

Objectifs:
Vérifier le dimensionnement des câbles de frein de parking DIE 180. On donne: Documents ressources DR 9/12.
Documents ressources DR 9/12.
Pour cette étude, on se place lors d'un serrage correspondant à la 2 ^{ème} consigne. (voir DR 9/12)
On demande :
5-1 / Calculez la contrainte maximum de traction que supporte chaque câble dans les conditions définies ci-dessus. Calculs avec 2 chiffres après la virgule
5-2 / Le coefficient de sécurité adopté pour ce montage est de 6. Le câble choisi par le constructeur convient-il ? Justifiez votre réponse.