1.AMÉTROPIE SPHÉRIQUE 18 PTS

Un oeil d'un sujet jeune présente une vergence (désaccommodée) D_0 = 61,50 δ . Sa rétine [R'] est à 20,875 mm du plan principal image [H' $_0$].

/2 /0,5 | 1.1 Calculer la réfraction axiale \Re et préciser la nature de l'amétropie. Déterminer la distance rémotale \overline{HoR}

1.2 Indiquer si cet œil peut fournir une vision nette au loin.

1.3 Déterminer la vergence D_L du verre compensateur placé à 15 mm de $[H_o]$ avec \overline{HoR} = +40 cm

Sans compensation et avec cet œil:

/1

/1.5

/1

/1

/1

/1,5

/1,5

/1.5

/1

/1

/1 /2

/1

/1 /1 /0,5

/1

/1

/0,5/0,5

/0.5

⇒ cette personne peut voir nettement au plus près à 10 cm de Ho.

1.4 Calculer l'accommodation maximale avec \Re = +2,50 δ .

1.5 Représenter le parcours d'accommodation coté réel (œil non compensé).

⇒ il regarde, sans lunette, un objet AB situé à 40 cm de son plan principal objet [Ho].

1.6 Calculer l'accommodation nécessaire pour voir nettement AB.

⇒ il regarde désormais le même objet (noté cette fois-ci ALBL) à travers son verre :

1.7 Déterminer l'accommodation nécessaire pour voir nettement avec compensation à 38,5 cm de [L].

1.8 Déterminer la distance du proximum apparent P_L avec Acc maxi = +12,50 δ et D_L = +2,41 δ

1.9 Représenter le parcours d'accommodation apparent œil (compensé).

A l'aide des résultats précédents, conclusion sur la « facilité à voir » à toutes les distances pour cet œil :

1.10 Indiquer si l'effort accommodatif est moindre avec ou sans lunettes.

Suite à un accident cet œil devient aphaque.

Il porte un verre compensateur placé à 13 mm de S (sommet de la cornée).

Ce nouveau verre compensateur a une vergence D_{La} = +13,50 δ

1.11 Calculer la position du remotum de cet œil devenu aphaque

1.12 Calculer sa réfraction axiale principale.

1.13 Calculer la puissance de cet œil aphaque avec SHo = SHo = +2mm et n'= 1.336.

2. ASTIGMATISME 7 PTS

Pour compenser parfaitement (à 15 mm de [Ho]) un œil il faut un verre de formule -4.25 (-1.75)_{0°}.

2.1 Indiquer les vergences de ce verre : $D_{L0^{\circ}}$ et $D_{L90^{\circ}}$

2.2 Calculer les réfractions axiales \Re_{90° et \Re_{0° .

2.3 Préciser la nature de l'astigmatisme :

mixte hypermétropique myopique / composé simple / direct inverse oblique.

La vergence horizontale de cet œil est $Do_{0^{\circ}} = 63,75 \, \delta$ et n' = 1,336

2.4 Déterminer la position de la rétine $H' \circ R'$.

2.5 Calculer la vergence verticale Do $_{90}$ avec \Re $_{90}$ =+5,50 δ et H'R' = 22.36mm

2.6 Calculer les deux distances focales images $\overline{H'oF'o_{0^{\circ}}}$ et $\overline{H'oF'o_{90^{\circ}}}$. Représenter sur un schéma la position des focales par rapport à la rétine.

SUJET NATIONAL			Session 2008		sujet
BEP OPTIQUE-LUNETTERIE					Secteur A : industriel
EP3 - Optique appliquée	Durée de l'épreuve	5h	Coefficient épreuve	5	
Partie EP3 b4) Optique physiologique	temps conseillé	1h	Coefficient partie	1.25	Page 1/1