BREVET D'ETUDES PROFESSIONNELLES

« SECTEUR 2 »

Bâtiment - Travaux Publics

MATHEMATIQUES - SCIENCES PHYSIQUES

DUREE : 2 HEURES COEFFICIENT : selon spécialité

Le sujet comporte 8 pages, numérotées de 1 à 8.

Le formulaire est en dernière page.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

Les candidats répondent sur une copie à part et joignent toutes les annexes.

L'usage de la calculatrice est autorisé.

Tous les exercices sont indépendants

Dès que le sujet vous est remis, assurez-vous qu'il soit complet.

METROPOLE - LA REUNION - MAYOTTE	Session juin	2008	
Examen : BEP Spécialité : Secteu Métiers du Bâtimen		•	
Épreuve : Mathématiques – Sciences Physiques	Durée : 2h00	Coef. : selon spécialité	Page 0/8

Mé	tropole – la Réu	nion - Mayotte	Session 2008		
	Examen:	BEP			
SUJET	Spécialité :			Coeff:	selon spécialité
	Épreuve :	Métiers du Bâtiment Mathématiques - Sc		Durée :	2 h
	Epicave.	Tradicinaliques St	rences i nysiques	Page:	1/8

Bois et matériaux associés

Finition

· Technique des installations sanitaires et thermiques

• Technique du froid et du conditionnement d'air

• Technique du gros œuvre du bâtiment

• Technique du toit

- Techniques de l'architecture et de l'habitat
- · Techniques des métaux, verres, matériaux de synthèse
- Techniques du géomètre et de la topographie
- Travaux publics

Ce document comporte 8 pages numérotées de 1/8 à 8/8. Le formulaire est en dernière page. La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

Les candidats répondent sur une copie à part et joignent toutes les annexes.

L'usage de la calculatrice est autorisé.

Tous les exercices sont indépendants.

Éclairage d'une pièce par un puits de lumière traversant le plafond et la toiture.

MATHÉMATIQUES (10 points)

Exercice 1 (2 points). Dimensions de la pièce à éclairer.

La figure ci-contre schématise le sol d'une pièce.

Celle-ci se compose d'un rectangle BCDE et d'un triangle rectangle ABE.

La figure ne respecte pas les proportions.

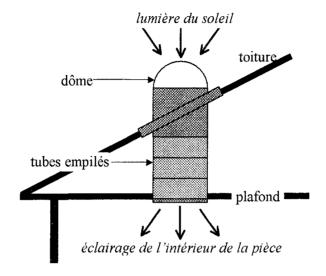
Les cotes sont en mètre.

- 1.1. Calculer, en m², l'aire A₁ de la partie de la pièce représentée par le triangle rectangle ABE. Arrondir la valeur au centième.
- 1.2. Calculer, en détaillant les étapes, la cote *L* à l'aide de la propriété de Pythagore. Arrondir la valeur au centième.
- A 225

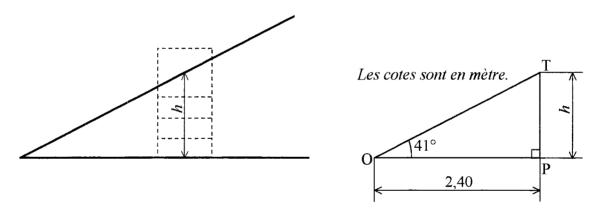
 A 25

 B 250

 D L
- 1.3. Vérifier en détaillant les calculs que l'aire totale A_t de la pièce est égale à 17,6 m² (valeur arrondie au dixième).


Exercice 2 (2 points). Emplacement d'un système d'éclairage.

- 2.1. Tracer sur la figure de **l'annexe 1 page 5 / 8**, le point G₁, intersection des diagonales du rectangle BCDE.
- 2.2. La médiane (AM) du triangle ABE est tracée sur la figure de l'annexe 1. Construire G₂ intersection des médianes du triangle ABE.
- 2.3. Tracer $[G_1G_2]$ et son milieu I.
- 2.4. Tracer le cercle de centre I et de rayon 1,2 cm. Il représente un futur système d'éclairage.


BEP Secteur 2 Épreuve: Mathématiques - Sciences Physiques Session 2008 Page: 2/8

Exercice 3 (2 points). Le puits de lumière à travers la toiture et le plafond.

La lumière du soleil pénètre dans le puits par un dôme transparent. Elle est ensuite guidée vers l'intérieur de la pièce par des tubes cylindriques empilés entre la toiture et le plafond.

Le nombre de tubes à empiler dépend de la hauteur h entre le plafond et la toiture.

- 3.1. Calculer, en détaillant les étapes, la cote h. Arrondir le résultat au centième.
- 3.2. Utiliser le tableau ci-dessous pour déterminer le nombre de tubes de hauteur 40 cm et le nombre de tubes de hauteur 60 cm correspondant à une hauteur *h* égale à 2,1 m.

hauteur	tubes de	tubes de
h (cm)	hauteur 40 cm	hauteur 60 cm
$40 \le h < 73$	1	0
$73 \le h < 108$	2	0
$108 \le h < 143$	1	1
$143 \le h \le 178$	0	2
$178 \le h \le 213$	1	2
$213 \le h < 248$	0	3
$248 \le h \le 283$	1	3
$283 \le h \le 318$	0	4

BEP Secteur 2

Épreuve: Mathématiques - Sciences Physiques

Session		
2008	Page:	3/8

Exercice 4 (4 points). Influence de la saison sur l'éclairement.

L'éclairement E (en lux) fourni par le dispositif dépend du diamètre D (en cm) du tube. Cet éclairement n'est pas le même au cours de l'année.

- 4.1. La courbe représentée dans le repère de **l'annexe 2 de la page 6 / 8** donne la valeur de l'éclairement moyen E_1 pendant l'hiver en fonction de la mesure du diamètre. Déterminer graphiquement la valeur de l'éclairement E_1 (en lux) fourni dans ces conditions par un tube de 33 cm de diamètre. Laisser apparents les traits utiles à la lecture.
- 4.2. La relation entre la valeur E_2 de l'éclairement moyen pendant l'été et la mesure du diamètre D est modélisée par la fonction f définie pour x appartenant à l'intervalle [10; 40] par : $f(x) = 0.42 x^2$
 - 4.2.1. Compléter le tableau de valeurs de l'annexe 2.
 - 4.2.2. Utiliser le repère de l'annexe 2 pour tracer la courbe représentative de f.
 - 4.2.3. Déterminer graphiquement f(33). Laisser apparents les traits utiles à la lecture.
- 4.3. On considère un tube dont le diamètre mesure 33 cm.
 - 4.3.1. Indiquer la valeur E_2 de l'éclairement fourni.
 - 4.3.2. En déduire la différence d'éclairement moyen E_2 E_1 entre les deux saisons.
- 4.4. Pour privilégier une ambiance lumineuse la plus régulière possible au cours de l'année, on souhaite une différence d'éclairement moyen inférieure à 200 lux.
 Parmi les références données dans le tableau suivant, choisir celle qui conviendra pour éclairer cette pièce.

Référence	Diamètre D en cm
Soltube RA-25	25
Soltube RA-33	33

SCIENCES PHYSIQUES (10 points)

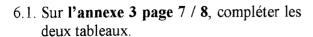
Exercice 5 (3 points). Fonctionnement de nuit.

Pour permettre l'éclairage de nuit, on installe dans le puits de lumière deux lampes fluocompactes basse consommation de caractéristiques 26 W - 230 V, avec deux interrupteurs permettant d'allumer séparément chaque lampe.

- 5.1. Sur l'annexe 1 page 5 / 8, compléter le schéma représentant le circuit électrique en plaçant deux interrupteurs qui permettent un allumage indépendant de deux lampes.
- 5.2. Calculer, en A, l'intensité qui traverse chaque lampe. Donner le résultat arrondi au centième. Formulaire : P = UI.
- 5.3. Calculer, en Wh, l'énergie E consommée par les deux lampes durant cinq heures de fonctionnement.

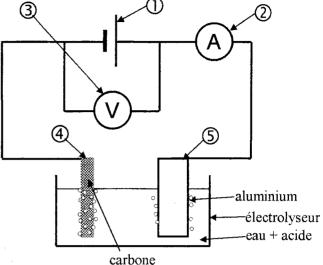
Formulaire: $E = P \times t$

BEP Secteur 2


Épreuve: Mathématiques - Sciences Physiques

Session		
2008	Page:	4/8

Exercice 6 (5 points).


Électrochimie.

Les tubes du puits de lumière sont en aluminium anodisé. L'anodisation est une électrolyse, qui peut être réalisée au laboratoire. Elle est schématisée ci-dessous :

- 6.2. Citer deux méthodes permettant de vérifier que la solution a un caractère acide.
- 6.3. Cette électrolyse a pour premier résultat la décomposition de l'eau.

$$H_2 O \longrightarrow H_2 + O_2$$

- 6.3.1. Recopier l'équation chimique et l'équilibrer en écrivant les coefficients stœchiométriques.
- 6.3.2. Nommer les produits de la réaction.
- 6.4. L'aluminium est ensuite oxydé. Il se forme une couche d'alumine Al₂ O₃ sur l'électrode.

On donne, en annexe 3, un extrait du tableau périodique des éléments :

- 6.4.1. Écrire le numéro atomique de l'aluminium.
- 6.4.2. Calculer la masse d'une mole d'alumine.

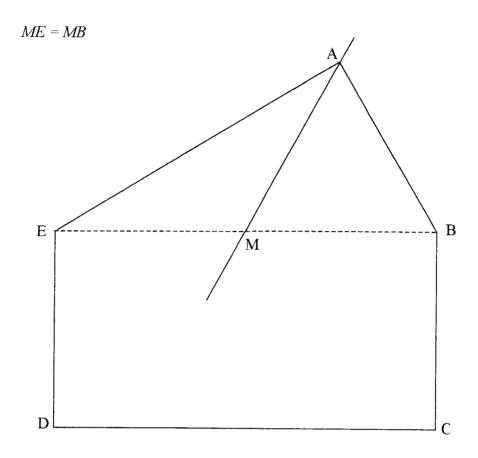
Exercice 7 (2 points). Résistance au choc du dôme.

Le dôme transparent du puits de lumière est limité par une surface demi-sphérique, représentée en photo puis en coupe sur **l'annexe 3 page 7 / 8**.

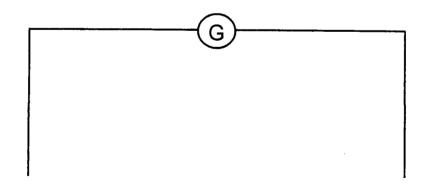
Un test statique réalisé en laboratoire indique que le dôme résiste à une charge maximale de 50 kg au point A.

- 7.1. Calculer, en N, la valeur de la force \overrightarrow{P} représentant le poids de la charge maximale (g = 9.81 N/kg). Arrondir la valeur à l'unité.
- 7.2. Sur l'annexe 3, schéma 2, le point G désigne le centre de gravité de la charge.

Représenter la force \overrightarrow{P} en prenant P = 490 N. Unité graphique : 1 cm représente 100 N.


7.3. La charge est maintenue en équilibre par un ouvrier dont l'action est négligeable devant les autres. Elle est donc en équilibre sous l'action de son poids représenté par la force \overrightarrow{P} et de l'action exercée par le dôme représentée par la force \overrightarrow{R} .

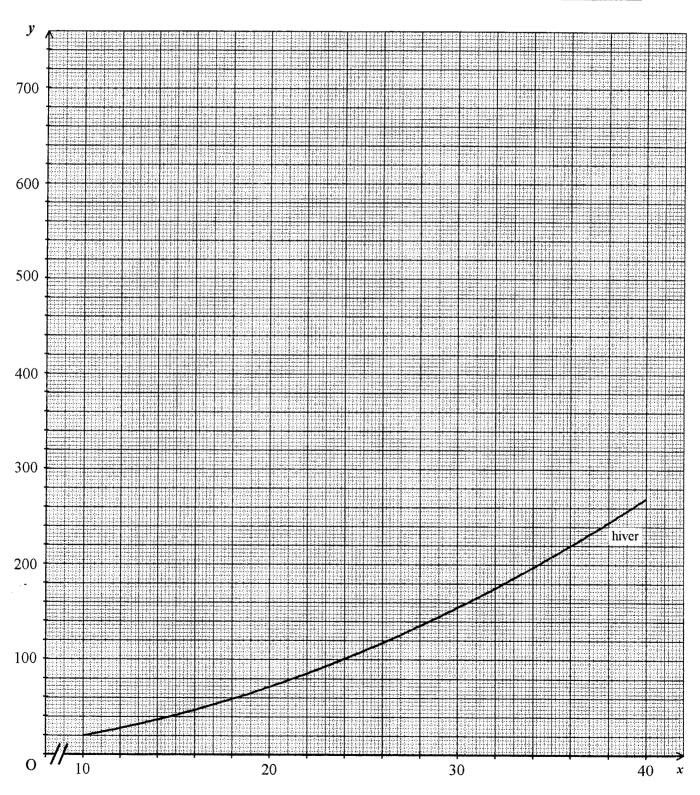
Compléter sur l'annexe 3 le tableau des caractéristiques des forces \overrightarrow{P} et \overrightarrow{R} .


	BEP Secteur 2	Session		
Épreuve :	Mathématiques - Sciences Physiques	2008	Page:	5/8

ANNEXE 1 À RENDRE AVEC LA COPIE

Exercice 2.

Exercice 5.

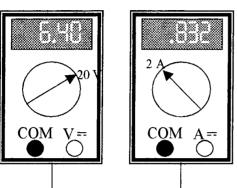


	BEP Secteur 2	Session		
Épreuve :	Mathématiques - Sciences Physiques	2008	Page:	6/8

ANNEXE 2 À RENDRE AVEC LA COPIE

Exercice 4. Tableau de valeurs de f.

valeur du diamètre en cm	x	10	20	25	30	35	40
valeur de l'éclairement en lux	$f(x) = 0.42 x^2$			262,5			672


BEP Secteur 2

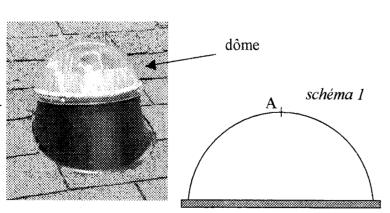
Épreuve: Mathématiques - Sciences Physiques

Session		
2008	Page:	7/8

ANNEXE 3 À RENDRE AVEC LA COPIE

Exercice 6.

Tableau 1:


nom de l'appareil n° 1	
nom de l'appareil n° 2	
nom de l'appareil n° 3	
nom de l'électrode n° 4	
nom de l'électrode n° 5	

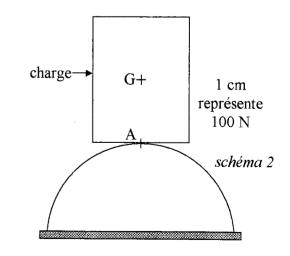

mots à utiliser dans le tableau ci-dessus : ampèremètre, anode, cathode, générateur de courant continu, voltmètre.

Tableau	2:	branché en série ou en dérivation ?	grandeur physique mesurée	valeur lue	unité
*	appareil n° 2				
appareil n° 3					

Extrait du tableau périodique des éléments 1,0g/mol symbole 4,0g/mol numéro atomique 1 Η He couche K masse atomique en g/mol nom hydrogène hélium 6 12,0g/mol 5 10,8g/mo**l** 10 6,9g/mol 9,0g/mol 16,0g/mol 14,0g/mol 19,0g/mo**l** 20,2g/mol 2 Be F Li В \mathbf{C} N O Ne couche L lithium béryllium carbone oxygène fluor 12 13 15 17 11 14 16 18 31,0g/mo**l** 23.0g/mol24,3g/mol 27,0g/mol28,1g/mol $32,1\,\mathrm{g/mol}$ 35,5g/mol 39,9g/mol 3 Mg P Na Al Si S Cl Ar couche M argon

action	force	point d'application	droite d'action	sens	valeur (N)
poids de la charge	\overrightarrow{P}				
action du dôme sur la charge	\overrightarrow{R}				

FORMULAIRE DE MATHÉMATIQUES BEP DES SECTEURS INDUSTRIELS

Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$
;

$$(a-b)^2 = a^2 - 2ab + b^2$$
;

$$(a+b)(a-b) = a^2 - b^2$$

Puissances d'un nombre

$$\overline{(ab)^m = a^m b^m \ ; \ a^{m+n} = a^m \times a^n \ ; (a^m)^n = a^{mn}}$$

Racines carrées

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 ; $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Suites arithmétiques

Terme de rang $1:u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1) r$

Suites géométriques

Terme de rang $1: u_1$ et raison q

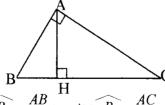
Terme de rang $n: u_n = u_1.q^{n-1}$

Statistiques

Effectif total
$$N = n_1 + n_2 + \cdots + n_p$$

Moyenne
$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$

Ecart type σ

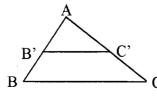

$$\sigma^{2} = \frac{n_{1} (x_{1} - \overline{x})^{2} + n_{2} (x_{2} - \overline{x})^{2} + \dots + n_{p} (x_{p} - \overline{x})^{2}}{N}$$

$$\sigma^2 = \frac{n_1 \ x_1^2 + n_2 \ x_2^2 + \dots + n_p \ x_p^2}{N} - \overline{x}^2$$

Relations métriques dans le triangle rectangle

$$AB^{2} + AC^{2} = BC^{2}$$

$$AH \cdot BC = AB \cdot AC$$



$$\widehat{Sin} \widehat{B} = \frac{AC}{BC}; \quad \cos \theta$$

$$\sin \widehat{B} = \frac{AC}{BC}; \quad \cos \widehat{B} = \frac{AB}{BC}; \quad \tan \widehat{B} = \frac{AC}{AB}$$

Énoncé de Thalès (relatif au triangle)

Si (BC) // (B'C')
alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Aires dans le plan

Triangle:
$$\frac{1}{2}Bh$$
.

Parallélogramme: Bh.

Trapèze :
$$\frac{1}{2}(B+b)h$$
.

Disque: πR^2 .

Secteur circulaire angle \alpha en degré :

$$\frac{\alpha}{360} \pi R^2$$

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit

d'aire de base B et de hauteur h:

Volume : Bh.

Sphère de rayon R:

Aire: $4 \pi R^2$

Volume : $\frac{4}{2} \pi R^3$.

Cône de révolution ou Pyramide

d'aire de base B et de hauteur h

Volume : $\frac{1}{2}Bh$.

Position relative de deux droites

Les droites d'équations y = a x + b et

y = a'x + b' sont:

- parallèles si et seulement si a = a'

- orthogonales si et seulement si a a' = -1

Calcul vectoriel dans le plan

$$\overrightarrow{v} \mid \underset{y}{x}; \overrightarrow{v'} \mid \underset{y}{x'}; \overrightarrow{v} + \overrightarrow{v'} \mid \underset{y+y'}{x+x'}; \lambda \overrightarrow{v} \mid \underset{\lambda v}{\lambda x}$$

$$||\overrightarrow{v}|| = \sqrt{x^2 + y^2}$$

Trigonométrie

$$\cos^2 x + \sin^2 x = 1$$

$$\tan x = \frac{\sin x}{\cos x}$$

Résolution de triangle quelconque

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$R : \text{rayon du cercle circonscrit}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$