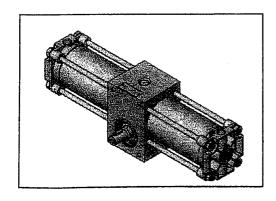
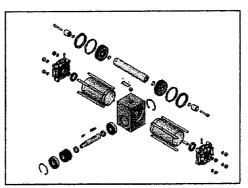
Brevet d'Études Professionnelles


Maintenance des Equipements de Commande des Systèmes Industriels


DOSSIER TECHNIQUE

NUMÉRO DU CANDIDAT

Ce dossier doit être rendu complet en fin de l'épreuve EP2.

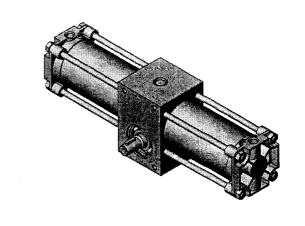
VERIN ROTATIF

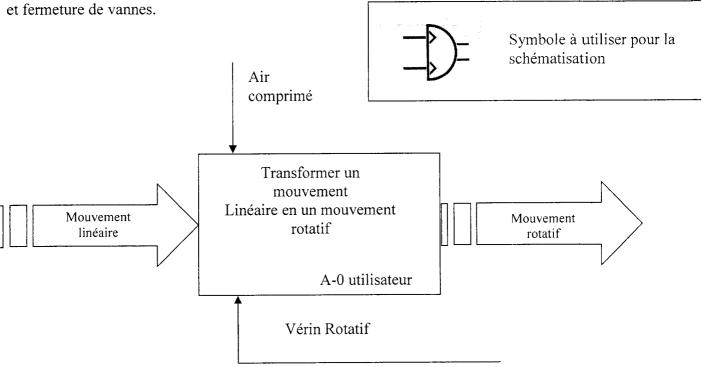
Brevet d'Etudes Professionnelles	Session 2001	3 DOSSIER TE	CHNIQUE				
EPREUVE EP2 : DESSIN DE CONSTRUCTION							
M.E.C.S.I.	Coeff.:1	Durée : 3 h 00	DT 1/13				

DOSSIER TECHNIQUE

Sommaire

Page de garde	DT1/13
Sommaire	DT2/13
Présentation du système	DT3/13
Documentation technique Clavettes	DT4/13
Documentation technique Engrenages	DT5/13
Tableau tolérances ISO	DT7/13
	DT8/13
Désignation des Aciers	DT9/13
	DT10/13
Nomenclature du système	DT11/13
Plan d'ensemble du système (Format A3-H)	DT12/13
Eclaté du vérin rotatif (Format A3-H)	DT13/13


Brevet d'Etudes Professionnelles M.E.C.S.I. EP2 : Epreuve de dessin de construction


1 – PRESENTATION DU SYSTEME

Le mécanisme présenté dans cette étude est un vérin rotatif. Le mouvement linéaire du vérin est transformé en mouvement rotatif par l'intermédiaire d'un engrenage pignon-crémaillère.

En fin de course, le piston a un amortissement réglable.

Le mouvement rotatif permet ainsi de réaliser des opérations de transfert, de blocage, ouverture et fermeture de vannes.

Construction

Chemise	Laiton
Corps/Pignon/Crémaillère	Acier
Joint	Nitrile - Viton pour série haute température
Flasques	Alliage d'aluminium

Fonctionnement

Température d'utilisation	Série 2 : + 5 °C à + 80 °C Série 3 : + 5 °C à + 180 °C
Température de stockage	Série 2 : — 40 °C à + 80 °C Série 3 : — 40 °C à + 180 °C
Pression d'utilisation	2 à 10 bars
Fluide admissible	Air filtré 50 μ - Lubrifié
Tolérance angulaire	± 1°

Brevet d'Etudes Professionnelles M.E.C.S.I. EP2 : Epreuve de dessin de construction Session 2008

DT 3/13

56.12 Clavetages

Le moyeu n'est lié qu'en rotation. Il peut coulisser sur l'arbre.

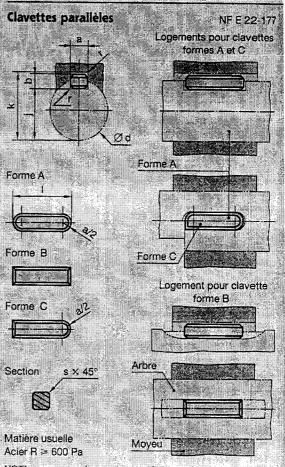
Du fait du léger jeu entre la clavette et la rainure dans le moyeu, ces clavetages ne conviennent pas pour des assemblages précis soumis à des mouvements circulaires alternatifs ou à des chocs (matage des portées). Préférer dans ces cas les cannelures à flancs, en développante (§ 56.22).

56.121 Clavettes parallèles

Elles sont utilisées pour les clavetages courts (longueur dépassant peu la valeur du diamètre de l'arbre (I < 1.5 d).

LOGEMENT

Le logement à bouts droits est d'exécution aisée (par fraise-disque). Il présente, cependant, les inconvénients d'être encombrant en longueur, et de moins bien maintenir la clavette que le logement à bouts ronds.


REMARQUES

- ► Les clavettes à section carrée peuvent être choisies dans de l'acier étiré (§ 84.3).
- ➤ Pour certaines applications, notamment dans le cas de fréquences de rotations élevées, il peut être nécessaire de coller les clavettes (chapitre 46).

Tolérances

L'ajustement de la clavette est « serré » sur l'arbre et « glissant juste » dans le moyeu (voir tableau).

EXEMPLE DE DÉSIGNATION ; Clavette parallèle, forme _____, a × b × l, NF E 22-177

NOTA: ne pas représenter les chanfreins sur les dessins d'étude.

Tolérances pour clavetages									
Clavette		sur a			h9				
Ciavette		sur b		h9 pour b ≤	6 h1	1 pour b > 6			
Ralnuré	libre	normal	serré	d		La ki			
Arbre	Н9	N9	P9	6 à 22 inc	lus	0 + 0,1			
Auto		11.7	1.7	100		0 + 0,2			
				22 à 13		- 0,2 0			
Moyeu	D10	Js9	P9	130 à 23	0	0 + 0,3			
A		and the second		to the second start	fritalisa di	- 0,3 0			

e 6 à 8 inclus	2	2	0,16	d - 1,2	d + 1	58 à 65	18	11	0,6	d-7	d + 4.4
8 à 10	3	3	0,16	d – 1,8	d + 1,4	65 à 75	20	12	0,6	d - 7,5	d + 4,9
10 à 12	4	4	0,16	d - 2,5	d + 1,8	75 à 85	22.	14	.1	d – 9	d + 5,4
12 à 17	5	5	0,25	d – 3	d + 2,3	85 à 95	25	14	1	d - 9	d + 5,4
17 à 22	6	- 6	0,25	d = 3,5	d + 2,8	95 à 110	28	16	1	d — 10	d + 6,4
22 à 30	8	7	0,25	d – 4	d + 3,3	110 à 130	32	18	1 *	d - 11	d + 7,4
30 à 38	10	8	0,4	d = 5	d.+ 3,3	130 à 150	36	20	1,6	d – 12	d + 8,4
38 à 44	12	- 8	0,4	d – 5	d + 3,3	150 à 170	40	22	1,6	d - 13	d + 9,4
44 à 50	14	9	0,4	d - 5,5	d ± 3,8	- 170 à 200	-45	25	1,6	d – 15	d + 10
50 à 58	16	10	0,6	d 6	d + 4,3	200 à 230	50	28	1,6	d – 17	d+11

Document: Guide du dessinateur industriel - CHEVALIER -

73 Engrenages

NF ISO 701 - NF EN ISO 2203

Un engrenage est un mécanisme élémentaire composé de deux roues dentées mobiles autour d'axes de position relative invariable.

L'une des roues entraîne l'autre par l'action des dents successivement en contact.

La roue qui a le plus petit nombre de dents est appelée pignon.

Suivant la position relative des axes des roues, on distingue :

- les engrenages parallèles (axes parallèles);
- les engrenages concourants (axes concourants);
- les engrenages gauches (les axes ne sont pas dans un même plan).

Une combinaison d'engrenages est appelée train d'engrenages.

73.1 Engrenages parallèles*

73.11 Définitions

CYLINDRE PRIMITIF DE FONCTIONNEMENT

Cylindre décrit par l'axe instantané de rotation II' du mouvement relatif de la roue conjugué par rapport à la roue considérée

La section droite du cylindre primitif est le cercle primitif de diamètre d.

CYLINDRE DE TÊTE

Cylindre passant par les sommets des dents. Sa section droite est le cercle de tête de diamètre d_a.

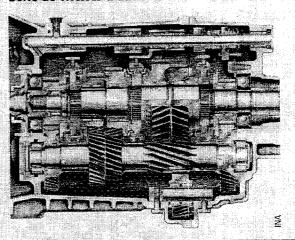
CYLINDRE DE PIED

Cylindre passant par le fond de chaque entre-dent. Sa section droite est le cercle de pied de diamètre d_f .

LARGEUR DE DENTURE (b)

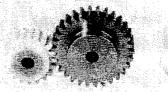
Largeur de la partie dentée d'une roue, mesurée suivant une génératrice du cylindre primitif.

FLANC

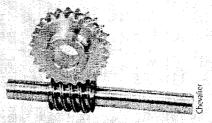

Portion de la surface d'une dent comprise entre le cylindre de tête et le cylindre de pied.

Daari

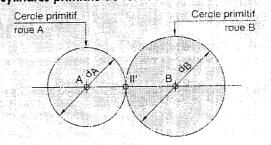
Section d'un flanc par un plan normal à l'axe (en mécanique générale, on n'utilise pratiquement que le profil en développante de cercle).

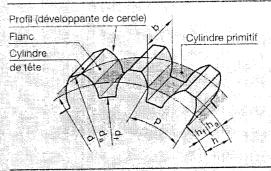

* Voir CD-Rom G.I.D.I.; animations.

Boîte de vitesses d'automobile


Engrenage parallèle

Engrenage concourant





Engrenage gauche

Cylindres primitifs de fonctionnement

297

Document: Guide du dessinateur industriel - CHEVALIER -

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2008

DT 5/13

Angle DE PRESSION (a)

Angle aigu entre le rayon du cercle primitif passant par le point où le profil coupe le cercle primitif et la tangente au profil de ce point.

LIGNE D'ACTION

Normale commune à deux profils conjugués en leur point de contact. Dans un engrenage à développante, la ligne d'action est une droite fixe tangente intérieurement aux deux cercles de base.

HAUTEUR DE DENT (h)

Distance radiale entre le cercle de tête et le cercle de pied. Elle se compose de la saillie (ha) et du creux (hf).

Cercle de base iane d'action de base

73, 12 Crémaillère de référence

Le profil de la crémaillère de référence définit les caractéristiques communes à toutes les roues cylindriques à développante de cercle.

Module (m)

Série principale

298

Le module est le quotient du pas exprimé en millimètres par le nombre π .

En première approximation, le module peut être calculé par la formule :

$$m = 2.34 \sqrt{\frac{\|\vec{Ft}\|}{k \cdot Rp_e}}$$

||Ft|| = force tangentielle en newtons.

= coefficient de largeur de denture, valeur choisie entre 6 et 10.

Rpe = résistance pratique à l'extension du matériau de la dent en mégapascals.

	····为(0)/"	
p = pas	42 47 14 47 14 47 14 47	
m = module	$p = \pi . m$	Ligne
1	1+200	de référence
, E		
25 m	ATAN ATA	
7.		
	N 0/2 0/2	Limite

Taille réelle des denture

Crémaillère de référence

ia dent en megapascais.	m = 0,8 - m =
Modules normalisés	sass bad
cipale 0.3 0.5 0.8 1 1.25 1.5 2 2 2.5 3 4 5 6 8 10	m = 2
Nombre minimal de dents*	a & A
13 14 14 15 16 17	
13 à 16 │ 13 à 26 │ 13 à 45 │ 13 à 101 │ 13 à ∞	

73.13 Caractéristiques d'une roue à denture droite normale ($\alpha = 20^{\circ}$)

Module	m	Déterminé par un calcul de résistance des matériaux (§ 73.12)**
Nombre de dents	Z	Déterminé à partir des rapports des vitesses angulaires : $\frac{\omega_A}{\omega_B} = \frac{n_A}{n_B} = \frac{z_B}{z_A}$
Pas	P	p = m.π
Salllie	ha -	c h _a = m
Стенх не на	u hi	h _t = 1,25 m
Hauteur de dent	h	$h = h_a + h_f = 2.25 \text{ m}$
Diamètre primitif	d	d=m.z
Diamètre de tête	d _a	$d_a = d + 2m$
Diamètre de pied	d _f	$d_f = d - 2.5 \text{ m}$
Largeur de denture	b	b = k.m (k valeur à se fixer, fréquemment on choisit entre 6 et 10.)
Entraxe de deux roues	a	$a = \frac{d_A + d_B}{2} = \frac{m \cdot z_A}{2} + \frac{m \cdot z_B}{2} = \frac{m(z_A + z_B)}{2}$

Document: Guide du dessinateur industriel - CHEVALIER -

Brevet d'Etudes Professionnelles M.E.C.S.I. EP2: Epreuve de dessin de construction

Ecarts limites pour ALESAGES extrait ISO 286-2 - (NF EN 20286-2)

Ecarts (ES) et (EI) en micromètre ($1\mu m = 0.001 \text{ mm}$) ES : écart supérieur En fonction des dimensions nominales en mm EI : écart inférieur

Au delà		3	6	10	18	30	50	80	120	180	250	315	400
de	ļ	Ì		1									
à (inclus)	3	6	10	18	30	50	80	120	180	250	315	400	500
	+60	+78	+98	+120	+149	+180	+220	+260	+305	+355	+400	+440	+480
D10	+20	+30	+40	+50	+65	+80	+100	+120	+145	+170	+190	+210	+230
	+39	+50	+61	+75	+92	+112	+134	+159	+185	+215	+240	+265	+290
E9	+14	+20	+25	+32	+40	+50	+60	+72	+85	+100	+110	+125	+135
	+31	+40	+49	+59	+72	+87	+104	+123	+143	+165	+185	+202	+223
F9	+6	+10	+13	+16	+20	+25	+30	+36	+43	+65	+56	+62	+68
	+16	+22	+27	+33	+40	+48	+56	+66	+77	+87	+98	+107	+117
<i>6</i> 8	+2	+4	+5	+6	+7	+9	+10	+12	+14	+15	+17	+18	+20
1.17	+10	+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+63
H7	0	0	0	0	0	0	0	0	0	0	0	0	0
1.10	+14	+18	+22	+27	+33	+39	+46	+54	+63	+72	+81	+89	+97
H8	0	0	0	0	0	0	0	0	0	0	0	0	0
1.10	+25	+30	+36	+43	+52	+62	+74	+87	+100	+115	+130	+140	+155
H9	0	0	0	0	0	0	0	0	0	0	0	0	0
H10	+40	+48	+58	+70	+84	+100	+120	+140	+160	+185	+210	+230	+250
HIU	0	0	0	0	0	0	0	0_	0	0	0	0	0
H11	+60	+75	+90	+110	+130	+160	+190	+220	+250	+290	+320	+360	+400
H11	0	0	0	0	0	0	0	0	0	0	0	0	0
H12	+100	+120	+150	+180	+210	+250	+300	+350	+400	+460	+520	+570	+630
HIE	0	0	0	0	0	0	0	0	0	0	0	0	0
H13	+140	+180	+220	+270	+330	+390	+460	+540	+630	+720	+810	+890	+970
П13	0	0	0	0	0	0	0	0	0	0	0	0	0
J57	±5	±6	±7,5	±9	±10,5	±12,5	±15	±17,5	±20	±23	±26	±28,5	±31,5
J7	+4	+6	+8	+10	+12	+14	+18	+22	+26	+30	+36	+39	+43
J /	-6	-6	-7	-8	-9	-11	-12	-13	-14	-16	-16	-18	-20
K7	+0	+3	+5	+6	+6	+7	+9	+10	+12	+13	+16	+17	+18
N/	-10	-9	-10	-12	-15	-18	-21	-25	-28	-33	-36	-40	-45
M7	-2	0	0	0	0	0	0	0	0	0	0	0	0
/*//	-12	-12	-15	-18	-21	-25	-30	-35	-40	-46	-52	-57	-63
N7	-4	-4	-4	-5	-7	-8	-9	-10	-12	-14	-14	-16	-17
187	-14	-16	-19	-23	-28	-33	-39	-45	-52	-60	-66	-73	-80
P7	-6	-8	-9	-11	-14	-17	-21	-24	-28	-33	-36	-41	-45
"/	-16	-20	-24	-29	-35	-42	-51	-59	-68	-79	-88	-98	-108

Brevet d'Etudes Professionnelles M.E.C.S.I. EP2 : Epreuve de dessin de construction Session 2008

DT 7/13

Ecarts limites pour ARBRES extrait ISO 286-2 - (NF EN 20286-2)

Ecarts (es) et (ei) en micromètre ($1\mu m = 0.001 \text{ mm}$) es : écart supérieur En fonction des dimensions nominales en mm ei : écart inférieur

Au delà		3	6	10	18	30	50	80	120	180	250	315	400
de													
à (inclus)	3	6	10	18	30	50	80	120	180	250	315	400	500
	-20	-30	- 40	-50	-65	-80	-100	-120	-145	- 170	-190	-210	-230
d9	-45	-60	-76	-93	-117	-142	-174	-207	-245	- 285	-320	-350	-385
14.0	-20	-30	-40	- 50	-65	-80	-100	-120	-145	-170	-190	- 210	- 230
d10	-60	-78	-98	- 120	-149	-180	-174	-220	-305	-305	-400	- 440	- 480
. 0	-14	-20	-25	- 32	-40	-50	-60	-72	-85	-100	-110	-125	-135
e8	-28	-38	-47	- 59	-73	-89	-106	-126	-148	-172	-191	-214	-232
e9	-14	-20	-25	- 32	-40	-50	-60	-72	-85	-100	-110	-125	-135
69	-39	-50	-61	-75	-92	-112	-134	-159	-185	-215	-240	-265	-290
f6	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50	-56	-62	-68
10	-12	-18	-22	-27	-33	-41	-49	-58	-68	-79	-88	-98	-108
f7	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50	-56	-62	-68
17	-16	-22	-28	-34	-41	-50	-60	-71	-83	-96	-108	-119	-131
f8	-6	-10	-13	-16	-20	-25	-30	-36	-43	-50	-56	-62	-68
10	-20	-28	-35	-43	-53	-64	-76	-90	-106	-122	-137	-151	-165
g6	-2	-4	-5	-6	-7	-9	-10	-12	-14	-15	-17	-18	-20
90	-8	-12	-14	-17	-20	-25	-29	-34	-39	-44	-49	-54	-60
h6	0	0	0	0	0	0	0	0	0	0	0	0	0
	-6	-8	-9	-11	-13	-16	-19	-22	-25	-29	-32	-36 0	-40 0
h7	0	0	0	0	0	0	0	0	0	0	-52	-57	-63
•••	-10	-12	-15	-18	-21	-25	-30	-35	-40	-46 0	-52	-57	-03
h8	0	0	0	0	0	0	0	0 -54	0 -63	-72	-81	-89	-97
	-14	-18	-22	-27	-33	-39 0	-46 0	0	-03	0	0	0	0
h9	0	0	0	0	0 -52	-62	-74	-87	-100	-115	-130	-140	-155
	-25	-30 0	-36 0	-43 0	0	0	0	0	0	0	0	0	0
h10	-40	-48	-58	-70	-84	-100	-120	-140	-160	-185	-210	-230	-250
			±4,5	±5,5	±6,5	±8	±9,5	±11	±12,5	±14,5	±16	±18	±20
js6	±3	±4							<u> </u>				±31,5
js7	±5	±6	±7,5	±9	±10,5	±12,5	±15	±17,5	±20	±23	±26	±28,5	
]6	+4	+6	+7	+8	+9	-11	+12	+13	+14	+16	+16	+18	+20
10	-2	-2	-2	-3	-4	-5	-7	-9	-11	-13	-16	-18	-20
j7	+6	+8	+10	+12	+13	+15	+18	+20	+22	+25	+26	+28	+31
J,	-4	- 4	-5	-6	-8	-10	-12	-15	-18	-21	-26	-28	-32
k6	+6	+9	+10	+12	+15	+18	+21	+25	+28	+33	+36	+40	+45
	0	+1	+1	+1	+2	+2	+2	+3	+3	+4	+4	+4	+5
m6	+8	+12	+15	+18	+21	+25	+30	+35	+40	+46	+52	+57	+63
	+2	+4	+6	+7	+8	+9	+11	+13	+15	+17	+20	+21	+23
n6	+10	+16	+19	+23	+28	+33	+39	+45	+52	+60	+66	+73	+80
	+4	+8	+10	+12	+15	+17	+20	+23	+27	+31	+34	+37	+40
p6	+12	+20	+24	+29	+35	+42	+51	+59	+68	+79	+88	+98	+108
20	+6	+12	+15	+18	+22	+26	+32	+37	+43	+50	+56	+62	+68

Brevet d'Etudes Professionnelles M.E.C.S.I.

Session 2008

DT 8/13

VI DESIGNATION DES ACIERS NF EN 10025 – IC 10 – NF EN 10027

Classification par emploi

La désignation commence par la lettre S pour les aciers d'usage général et par la lettre E pour les aciers de construction mécanique.

Le nombre qui suit indique la valeur minimale de la limite d'élasticité en mégapascals*.

EXEMPLE S 235.

S'il s'agit d'un acier moulé, la désignation est précédée de la lettre **G**.

EXEMPLE GE 295.

		Aciers d'	usage général
Nuance	R min.**	Re min.**	Emplois
S 185	290	185	
S 235	340	235	Constructions mécaniques
5 275	410	275	et métalliques générales
S 355	490	355	assemblées ou soudées.
E 295	470	295	Ces aciers ne conviennent pas
E 335	.570	335	aux traitements chimiques.
E 360	670	360	
Moulage	10 77 277 7 3	- GS 275 – G - GE 335 – G	

^{**} R min. = résistance minimale à la rupture par extension (MPa). Re min. = limite minimale apparente d'élasticité (MPa).

Classification par composition chimique

Aciers non alliés

Teneur en manganèse < 1 %.

La désignation se compose de la lettre **C** suivie du pourcentage de la teneur moyenne en carbone multipliée par 100.

EXEMPLE

C 40.

40:0,40 % de carbone.

S'il s'agit d'un acier moulé, la désignation est précédée de la lettre G.

EXEMPLE

GC 25.

25:0,25 % de carbone.

			P	rinci	paux	acie	rs mol	ılés	
GC	22	- GC	25 -	GC 3	0 – G	C 35 –	GC 40.		

Principaux aciers de forgeage

C 22 - C 25 - C 30 - C 35 - C 40 - C 45 - C 50 - C 55.

		Aciers	non alliés		
Nuance	R min.*	Re min.*	Emplois		
C 22	410	255	Constructions mécaniques.		
C 25	460	285	Constructions mecaniques.		
C 30	C 35 570 335		Ces aciers conviennent aux traitements thermiques et au forgeage.		
C 35					
C 40					
C 45	660	375			
C 50	C 50 700 395 C 55 730 420		NOTA: Cette symbolisation ne s'applique		
C 55					
C 60 HRC ≥ 57			pas aux aciers de décolletage.		

	Symbole:	s chimiqu	ies intern	ationaux	
Élément d'alliage	Symbole chimique	Élément d'alliage	Symbole chimique	Élément d'alliage	Symbole chimique
Aluminium	Al	Cobalt	Со	Nickel	Ni
Antimoine	Sb	Cuivre	Cu -	Niobium	Nb
Argent	Ag	Étain	Sn	Plomb	Pb
Bérylium	Be	Fer	Fe	Silicium	Si
Bismuth	Bi	Gallium	Ga	Strontium	Sr
Bore	В	Lithium	Li	Titane	Τi
Cadmium	Cd	Magnésium	Mg	Vanadium	٧
Cérium	Ce	Manganèse	Mn	Zinc	Zn
Chrome	Cr	Molybdène	Мо	Zirconium	Zr

Brevet d'Etudes Professionnelles M.E.C.S.I. EP2 : Epreuve de dessin de construction

^{*} $1 \text{ MPa} = 1 \text{ N/mm}^2$.

Aciers faiblement alliés

Teneur en manganèse ≥ 1 %. Teneur de chaque élément d'alliage < 5 %.

La désignation comprend dans l'ordre :

- un nombre entier, égal à cent fois le pourcentage de la teneur moyenne en carbonne;
- un ou plusieurs groupes de lettres qui sont les symboles chimiques des éléments d'addition rangés dans l'ordre des teneurs décroissantes ;
- une suite de nombres rangés dans le même ordre que les éléments d'alliage, et indiquant le pourcentage de la teneur moyenne de chaque élément.

Les teneurs sont multipliées par un coefficient multiplicateur variable en fonction des éléments d'alliage (voir tableau ci-contre).

EXEMPLES

55 Cr 3.

0.55 % de carbone - 0.75 % de chrome (3 : 4 = 0.75).

51 Cr V 4.

0.51 % de carbone -1 % de chrome (4:4=1).

Pour cette désignation, le pourcentage de vanadium n'est pas précisé.

Aciers faiblement alliés				
D II .	Traitement de référence			
Nuances usuelles	R min.*	Re min.*		
38 Cr 2	800	650		
34 Cr 4	880	660		
37 Cr 4	930	700		
41 Cr 4	980	740		
55 Cr 3	1 100	900		
100 Cr 6	HRC ≥ 62			
25 Cr Mo 4	880	700		
35 Cr Mo 4	980	770		
42 Cr Mo 4	1 080	850		
16 Cr Ni 6	800	650		
17 Cr Ni Mo 61	1 130	880		
30 Cr Ni Mo 81	1 030	850		
51 Cr V 4	1 180	1 080		
16 Mn Cr 5	1 080	835		
20 Mn Cr 5	1 230	980		
36 Ni Cr Mo 16	1 710	1 275		
51 Si 7	1 000	830		
60 Si Cr 7	1 130	930		

NOTA:

Cette symbolisation s'applique aussi aux aciers non alliés de décolletage.

Coefficient mu	Coefficient multiplicateur				
Élément d'alliage	Coef.	Élément d'alliage	Coef.		
Cr, Co, Mn, Ni, Si, W	4	Ce; N, P, S	100		
Al Re Cu Mo Nh Ph Ta Tl V 7r	10	В	1 000		

Aciers fortement alliés

Teneur d'au moins un élément d'alliage ≥ 5 %.

La désignation commence par la lettre X suivie de la même désignation que celle des aciers faiblement alliés, à l'exception des valeurs des teneurs qui sont des pourcentages nominaux réels.

EXEMPLE

X 30 Cr 13.

0,30 % de carbone - 13 % de chrome.

Aciers rapides

La désignation comprend successivement les symboles suivants:

- Les lettres HS.
- Les nombres indiquant les valeurs des éléments d'alliage dans l'ordre suivant :
- tungstène (W),
- molybdène (Mo),
- vanadium (V),
- cobalt (Co).
- Chaque nombre représente la teneur moyenne.

EXEMPLE

HS 8,5-3,5-3,5-11.

8,5 % de tungstène, 3,5 % de molybdène, 3,5 % de vanadium, 11 % de cobalt.

Aciers fortement alliés				
	Traitement de référence			
Nuances usuelles	R min.*	Re min.*		
X 4 Cr Mo 5 18	400	275		
X 30 Cr 13	HRC ≥ 51			
X 2 Cr Ni 19-11	460	175		
X 5 Cr Ni 18-10	510	195		
X 5 Cr Ni Mo 17-12	510	205		
X 6 Cr Ni Ti 18-10	490	195		
X 6 Cr Ni Mo Ti 17-12	540	215		

HS 8,5-3,5-3,5-11 (Nuance

Cette nuance doit toujours être choisie

en priorité.

Il s'agit d'un acier rapide, fortement allié, capable de résister à des températures

élevées.

HS 6,5-7-6,5-10,6 (Nuance Sandvick C 60)

Sandvick C 45)

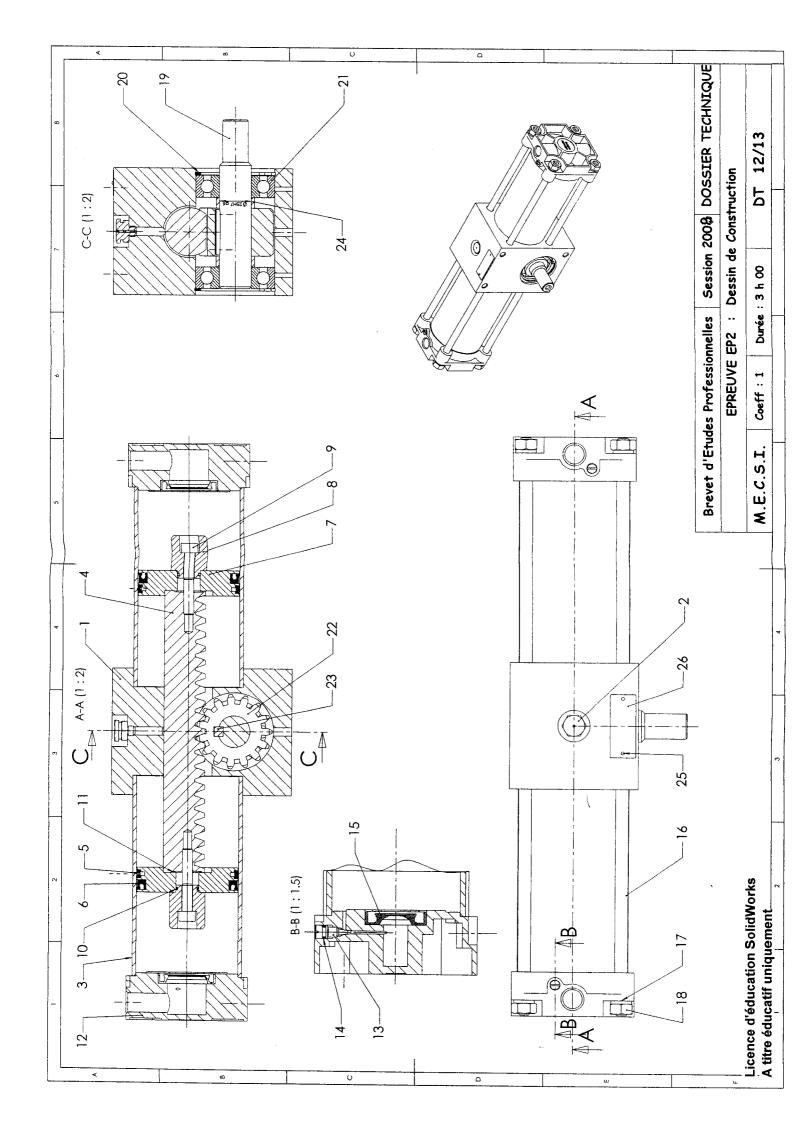
Cette nuance est un choix alternatif lorsqu'une haute résistance à l'usure est

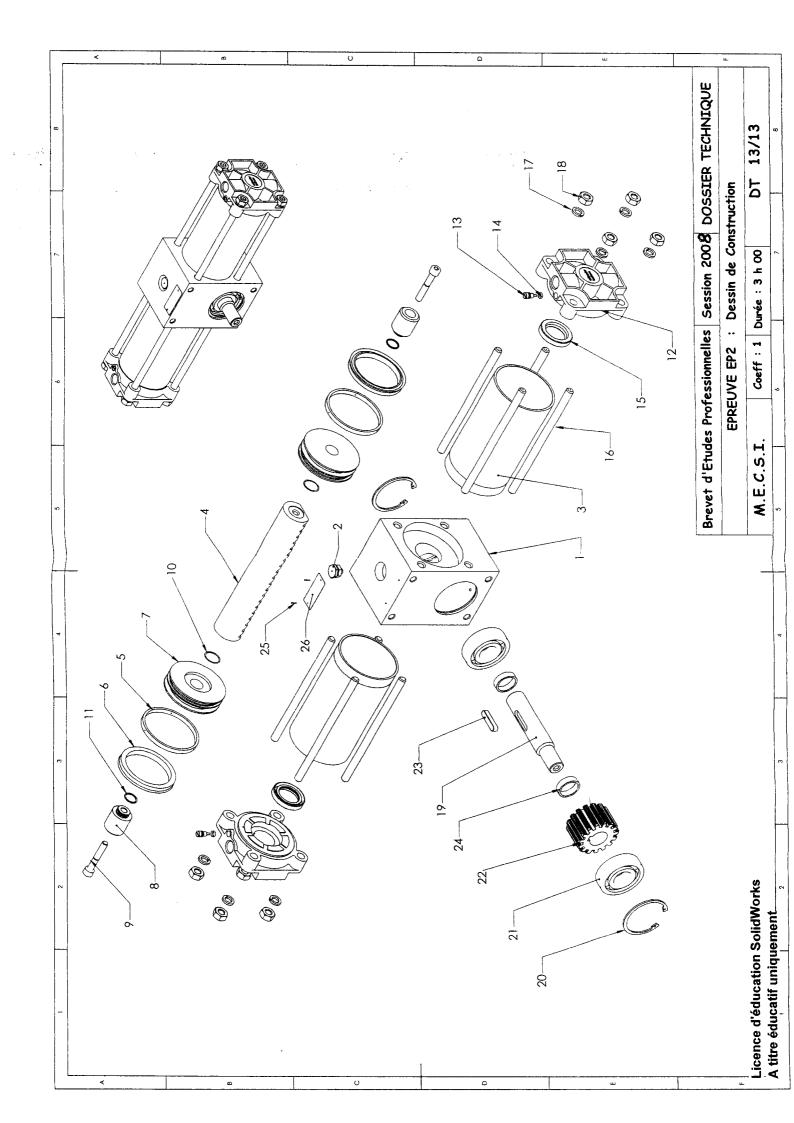
un critère déterminant.

Nota : Les aciers rapides peuvent être revêtus d'une couche de nitrure de titane (Ti N) qui en augmente la dureté et la longévité.

Brevet d'Etudes Professionnelles M.E.C.S.I. EP2: Epreuve de dessin de construction

Session 2008


30				
29				
28				
27				
26	1	Plaque signalétique		•
25	2	Clou		
24	2	Entretoise		
23	1	Clavette		
22	1	Roue dentée m = 3,5 Z = 15	35 Cr Mo 4	
21	2	Roulement à billes	100 Cr 6	
20	2	Anneau élastique	C 60	Phosphaté
19	1	Arbre de commande	<i>2</i> 9	
18	8	Ecrou hexagonal		
17	8	Rondelle - W10		777
16	8	Tirant		<u> </u>
15	2	Joint à lèvres		
14	2	Joint torique		
13	2	Vis pointeau	⇒ 20 Mn Cr 5	
12	2	Culasse	L 1	
11	2	Joint torique		
10	2	Joint torique		
9	2	Vis à tête cyl. À 6 pans creux	* * *	
8	2	Piston amortisseur		*
7	2	Piston		
6	2	Joint à lèvres		
5	2	Segment		
4	1	Crémaillère		
3	2	Chemise		
2	1	Graisseur		
1	1	Corps		
Rep	Nb	Désignation	Matière	Remarque
		VERIN ROTAT		RADER


Brevet d'Etudes Professionnelles M.E.C.S.I.

EP2 : Epreuve de dessin de construction

Session 2008

DT 11/13

