Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Ministère de l'éducation nationale

MENTION COMPLÉMENTAIRE

MAINTENANCE DES SYSTEMES EMBARQUES DE L'AUTOMOBILE

Dominante: V.P.

SESSION 2008

Épreuve E1 Unité: U 1

ÉTUDE TECHNIQUE

S 11, S 12, S 21, S 31, S 32, S 34, S 41, S 43, S 44, C 1.C 2, C 3

Il est demandé aux candidats

- De contrôler les dossiers travail et ressources, ils doivent être complets.
- D'inscrire votre nom, prénom et N° d'inscription sur la copie double "modèle EN" qui sert de chemise à votre dossier travail.
- De vous servir du dossier ressource pour répondre aux questions du dossier travail.
- Aucune réponse ne doit apparaître dans le dossier ressources.
- En fin d'épreuve vous devez rendre ces deux dossiers.
- De ne pas remplir les parties grisées

Ministère de l'é	ducation nationale	Sessi	on : 2008	Code: 01	10 – 25507 R
Examen: M.C. Maintenance des Systèmes Embarqués de l'Automobile – Dominante : Véhicules Particuliers					
Corrigé Épreuve : E1 Etude technique Durée : 3h Coefficier					Page 1 sur 15

MISE EN SITUATION

Ce dossier concerne le système d'injection diesel common railHDI SIEMENS SID 801 équipant la Peugeot PARTNER

Type: GJRHYB

Type moteur: DW10TD

1^{érè} mise en circulation : 25/10/2002

Kilométrage: 43672 kms

Le client signale le symptôme suivant :

- Témoin d'alerte injection est allumé
- Le véhicule démarre, mais manque de puissance dans toutes les plages de régime.

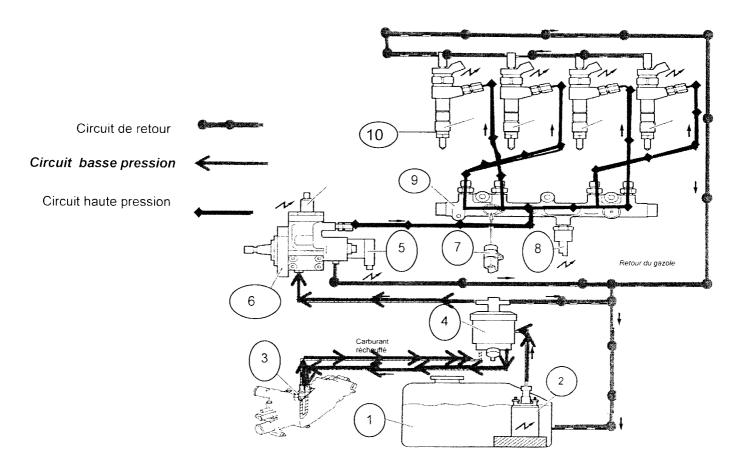
Après la mise en œuvre du diag 2000, l'appareil vous oriente vers un problème de la haute pression

Vous devez compléter ce dossier vous permettant de :

- Connaître le dispositif,
- Décoder et analyser l'intervention technique.
- Décrire le mode de fonctionnement à partir des dessins, schémas fonctionnels et structurels fournis,
- Proposer un diagnostic en relation aux mesures fournies

Examen : M.C. Maintenance des systèmes embarqués de l'automobile - Dominante : VP					010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 2 / 15

Question 1:


Identifiez les caractéristiques du véhicule en complétant le tableau ci-dessous.

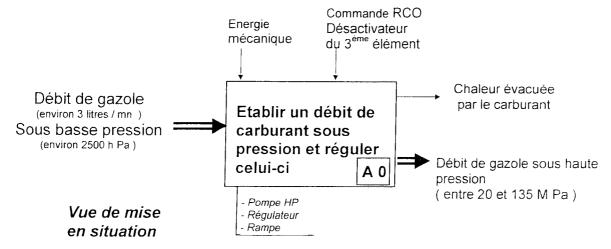
Marque	Appellation commerciale	Type mines
PEUGEOT	PARTNER	GJRHYB
Type Moteur	Marque & type calculateur	
DW10TD	SIEMENS SID 801	

Afin de préparer le diagnostic, on vous demande, à l'aide du document ressources, de prendre connaissance du circuit d'alimentation en gazole puis de répondre aux questions suivantes

Question 2:

- Le synoptique ci-dessous représente le circuit d'alimentation en carburant **température** inférieure à **20°**, identifier en **bleu** le circuit basse pression, en **rouge** le circuit haute pression et en **vert** le circuit de retour.

Examen : M.C. Maintenance des systèmes embarqués de l'automobile - Dominante : VP					010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 3 / 15


Question 3:

Indiquez le nom des éléments repérés sur le schéma du circuit de carburant

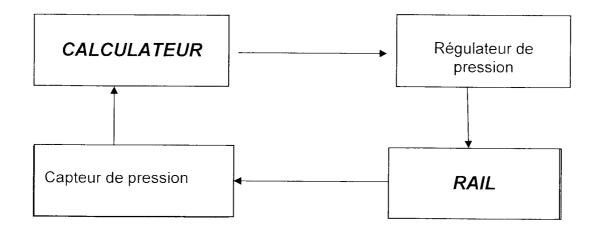
1	Réservoir
2	Pompe d'alimentation
3	Réchauffeur à carburant
4	Filtre à carburant
5	Régulateur de pression carburant
6	Pompe haute pression
7	Capteur de température
8	Capteur haute pression
9	Rail
10	Injecteur

Question 4:

Sur l'analyse fonctionnelle partie opérative : pompe haute pression, régulateur, rampe, complétez la fonction globale :

Examen : M.C	. Maintenance des systèmes embarc	ués de l'autom	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique Session 2008	3 heures	Coeff. 3	Page 4 / 15

Maintenant vous poursuivez le diagnostic, en identifiant les valeurs de référence de la cartographie d'injection.


Question 5:

A l'aide du document ressources, complétez le tableau des pressions en vous aidant de la cartographie d'injection

Temps d'injection	Débit	Pression
1.2 ms	0.045 cm3	400 Bars
1 ms	O.O85 cm3	1300 Bars

Question 6:

Afin de déterminer l'élément en dysfonctionnement, complétez la boucle de régulation haute pression

Question 7:

Comment s'appelle ce type de boucle ? :

.....boucle fermée......

Examen : M.C	. Maintenance des s	systèmes embarqu	iés de l'autom	obile - Dominante : VP	010 – 25507 R
Epreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 5 / 15

Maintenant vous poursuivez le diagnostic relatif au problème de manque de puissance :

Le client s'est aperçu de l'apparition du témoin ci-contre au tableau de bord au cours de la mise du contact

Question 8:

Indiquez la signification de ce témoin :

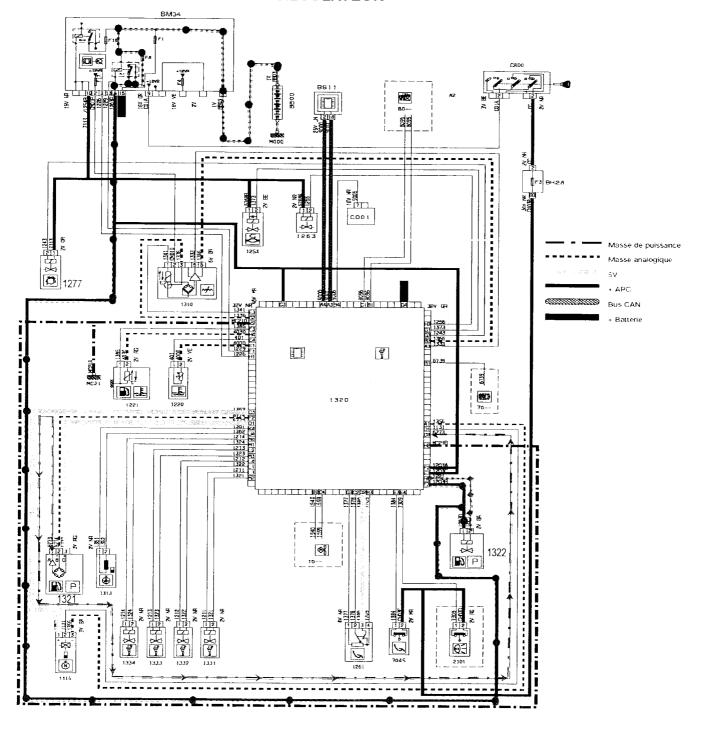
... ce témoin indique un dysfonctionnement de l'injection HDI

Maintenant vous vous intéressez au calculateur d'injection qui reçoit des informations, et commande des actionneurs et informe la prise diagnostic.

Question 9: (voir le schéma électrique et le synoptique du doc ressources)

Complétez le tableau ci-dessous en indiquant le N° et le NOM des capteurs et actionneurs reliés à l'entrée et à la sortie du calculateur .

Entrées			Sorties
N°	NOM	N°	NOM
BM 34	BSM	BM 34	BSM
COO1	PRISE DIAG	ł	PRISE DIAG
1261	Capteur position pédale	1277 1150	Régulateur de débit
1321	Capteur haute pression	1150	Boîtier de préchauffage
7308	Contacteur de sécurité du régulateur de vitesse (frein)	1263	Electrovanne de papillon E0
1220	Capteur température eau moteur	1332	Injecteur
1313	Capteur régime moteur	1263 1332 1322	Régulateur haute pressior gazole
1310	Débitmètre air	1334	Injecteur
1510	MOTO-VENTILATEUR (GMV)	1500	GMV
1115	Capteur référence cylindre	1331	Injecteur
1221	Thermistance gazole	1333	Injecteur
7306	Contacteur de sécurité du régulateur de vitesse (embrayage)	1500 1331 1333 BCP3	BOITIER COMMUTATION
8007	PRESSOSTAT	1253	Electrovanne de vanne EGR


Examen: M.C	. Maintenance des s	systèmes embarqu	ués de l'autom	obile - Dominante : VP	010 - 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 6 / 15

Question 10 : Maintenant vous identifiez la boucle de régulation

Coloriez sur le schéma ci-dessous :

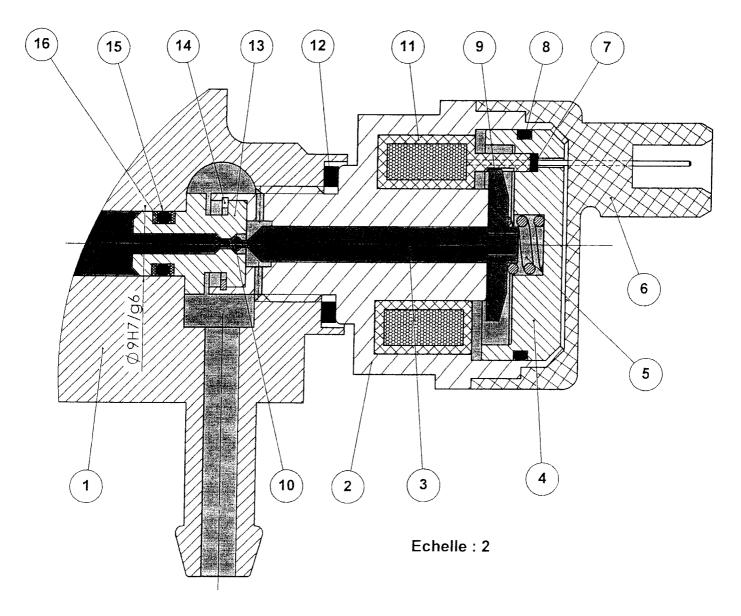
en **rouge** le circuit de puissance électrique du régulateur de pression en **vert** le circuit de commande par le calculateur (masse) en **bleu** le signal du capteur de pression

SCHEMATIQUE FILAIRE SUR LE CALCULATEUR

Examen : M.C	. Maintenance des s	ystèmes embarqu	ués de l'automo	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 7 / 15

Maintenant vous étudiez le fonctionnement du régulateur de pression

Question 11:

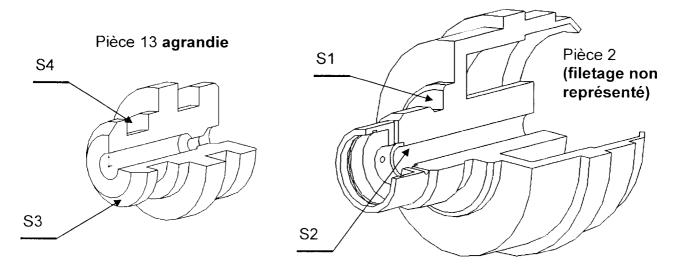

 Identifiez et coloriez en bleu sur le dessin d'ensemble du régulateur ci-dessous, les pièces mobiles (pièce n° 3 et prévoir n° 5 non colorié).

Question 12:

 Identifiez et coloriez en orange les parties occupées par le gazole à la pression d'injection HP.

en vert le retour au réservoir.

<u>A-A</u>



Examen : M.C	. Maintenance des s	systèmes embarqu	ués de l'autom	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 8 / 15

Question 13:

Analyse des surfaces fonctionnelles

En vous aidant des figures ci-dessous complétez le tableau pour les surfaces S2, S3, S4

Rep	Type de surface	Terme technique	Fonction
S1	plane	épaulement	Appui du joint 12
S2	cylindrique	alésage	guidage du poussoir
S3	conique	chanfrein	faciliter le montage dans l'alésage
S4	plane+cylindrique	gorge	logement du joint torique

Question 14:

- Fonction étanchéité

Définissez en cochant avec une croix le type d'étanchéité et précisez la solution technologique utilisée

Pièces	Туј	oe d'étanchéité	Solutions technologiques
1/2	Statique	Directe	Joint plat en cuivre
172	Dynamique	Indirecte	
1 / 13	Statique	Directe	Joint torique 15 + 2 bagues 16
. 7 10	Dynamique	Indirecte	

Examen : M.C	. Maintenance des syst	tèmes embarqı	ués de l'automo	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique Se	ession 2008	3 heures	Coeff. 3	Page 9/15

Question 15:

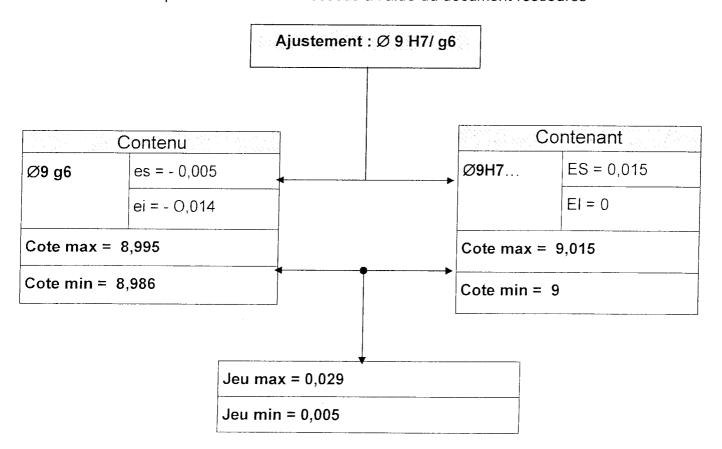
- Définissez le caractère de la liaison entre les pièces 1 et 2 :
- (barrez les cases non conformes)

		Démontable	Adhérence	Direct
Complète	Rigide			

Précisez la solution technologique utilisée : ... filetage + taraudage...

Question 16:

- Donnez la signification du filetage du corps M16x1,5


M: pas métrique.....

16: Ø nominal 16.....

1,5: pas 1,5 mm.....

Question 17:

L'ajustement de 13 dans 1 est Ø 9H7/h6
 Complétez le tableau ci-dessous à l'aide du document ressource

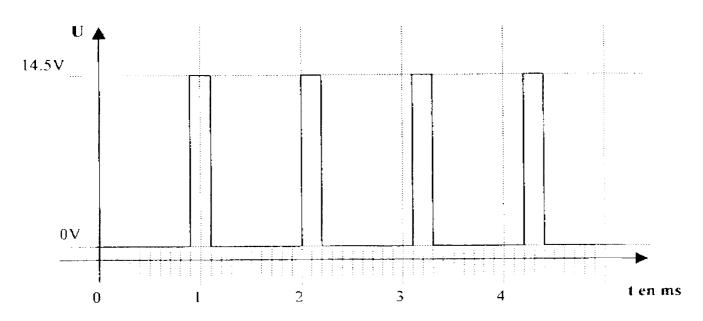
Examen : M.C	. Maintenance des s	systèmes embarqu	ués de l'autom	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 10 / 15

Maintenant vous poursuivez le diagnostic, en identifiant les valeurs de RCC du régulateur de pression et de pression de rail.

Question 18:

Complétez le tableau ci-dessous de relevé des mesures.

Conditions de mesure	RCC en %	Valeur de la pression	(ray	Débit de retou rer les mention correspondant	ns ne
Moteur à l'arrêt	0%	NUL			
Moteur au ralenti	15 à 18%	300	Grand		74.2 kg ()
Moteur à 4000 t /mm	22 à 25 %	600			Faible


Vous décidez ensuite d'utiliser les mesures paramètres "du diag 2000"

Vous relevez les valeurs suivantes :

Pression HP à 4000tr/mn : P = 450 bars Résistance capteur de pression : $R = 1.1 \text{ k}\Omega$ Tension capteur de pression : U = 1.5V

Avec l'oscilloscope, vous relevez le signal de commande du régulateur de pression carburant à un régime moteur de 4000tr/mn (voir graphe ci-dessous)

Nota: la commande se fait par le 0V

Examen : M.C	C. Maintenance des s	systèmes embarqu	ués de l'automo	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 11 / 15

Question 19:

Calculez le rapport cyclique de commande RCC du signal en %.

Temps de commande

———— X 100

Période

A partir de maintenant, vous confirmez vos hypothèses

Question 20:

Quel élément faut-il contrôler avant de confirmer le diagnostic ? Décrivez le type de contrôle et les conditions.

L'actuateur du régulateur ou bobinage du régulateur Contrôle de la résistance du bobinage R= $15 \Omega + ou - 10\%$ L'isolement à la masse Le connecteur doit être débranché, et le contact coupé

Maintenant vous pouvez déterminer le dysfonctionnement

Question 21:

Vous venez de relever une valeur de résistance infinie aux bornes du bobinage du régulateur

CONCLUSION : Quel est l'élément qui engendre la panne ? Expliquer le dysfonctionnement

Le bobinage du régulateur de pression.

Avec 600 bars le RCO et de 20 à 25 % alors que les valeurs trouvées sont : RCO = 81 % pour une pression de 450 bars

Examen : M.C	. Maintenance des s	systèmes embarqu	ués de l'autom	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 12 / 15

Compte tenu des pressions très élevées (jusqu'à 1500 bars) il est nécessaire de respecter des consignes de sécurités

Question 22:

Quelles sont les consignes de sécurité **pendant l'intervention** à respecter sur un système d'injection haute pression :

- A Interdiction de fumer à proximité du circuit haute pression
- B Après arrêt du moteur, attendre 30 secondes avant toute intervention
- C Eviter de travailler à proximité d'une flamme

Question 23:

Quelles sont les consignes de sécurité **moteur tournant** à respecter sur un système d'injection haute pression :

- A.....Ne pas intervenir sur le circuit haute pression
- B ... Ne pas approcher les mains , les yeux d'une fuite sur le circuit haute pression
- C Ne pas débrancher les connecteurs des injecteurs et du calculateur

Question 24:

Que faut-il effectuer avant de livrer au client son véhicule possédant une gestion électronique suite à la réparation sur ce type de système.

Sachant que le témoin de diagnostic moteur c'est allumé, il faudra effacer le ou les codes défauts

EVALUATION DE L'EPREUVE E1, U1

Compé-					C	ritères	A. Car	
tences /	QUESTIONS	INDICATEURS	_			+	Note	Barème
S 41	Question 1 Page 3 / 15	Le tableau est correctement complété	+ 1 erreur /0	**************************************	1 erreur /1	Sans erreur /2		2
S 12	Question 2 Page 3 / 15	Les trois circuits surlignés et justes	3 erreurs /0	2 erreurs /1	1 erreur /2	Sans erreur /3		3
S 12	Question 3 Page 4 / 15	Les éléments sont identifiés	+2 erreurs /0	2 erreurs /3	1 erreur /4	Sans erreur /5		5
S 12	Question 4 Page 4 / 15	La fonction est clairement énoncée	+1 erreur /0		1 erreur /1	Sans erreur /3		3
C 21	Question 5 Page 5 / 15	Les valeurs sont justes	1 erreur /0			Sans erreur /2		2
C 21	Question 6 Page 5 / 15	La boucle de régulation est bien complétée	+1 erreur /0		1 erreur /2	Sans erreur /3		3
C 21	Question 7 Page 5 / 15	Le type de boucle de régulation est identifié	1 erreur /0			Sans erreur /2		2
C 21	Question 8 Page 6 / 15	La fonction du témoin est exacte	1 erreur /0			Sans erreur /2		2
C 21	Question 9 Page 6 / 15	Le N° et le nom des entrées et des sorties sont identifiés	+2 erreurs /0	2 erreurs /3	1 erreur /4	Sans erreur /5		5
C 21	Question 10 Page 7 / 15	Les circuits sont correctement identifiés	3 erreurs /0	2 erreurs /1	1 erreur /3	Sans erreur /4		4
S 12	Question 11 Page 8 / 15	Les pièces sont correctement identifiées	+ 1 erreur /0		1 erreur /1	Sans erreur /2		2
S 31	Question 12 Page 8 / 15	Les deux circuits sont coloriés sans erreur	3 erreurs /0	2 erreurs /1	1 erreur /3	Sans erreur /4		4
S 12	Question 13 Page 9 / 15	Le tableau est correctement renseigné	3 erreurs /0	2 erreurs /1	1 erreur /3	Sans erreur /4		4
S 31	Question 14 Page 9 / 15	Les solutions d'étanchéités sont identifiées et une solution technologique est énoncée	+ 1 erreur /0		1 erreur /1	Sans erreur /2		2
S 31	Question 15 Page 10 / 15	Les différents types de liaisons sont clairement identifiés et une solution technologique est énoncée	3 erreurs /0	2 erreurs /1	1 erreur /2	Sans erreur /3		3
S 12	Question 16 Page 10 / 15	L'identification du filetage est exacte	+1 erreur /0		1 erreur /2	Sans erreur /3		3
C 22	Question 17 Page 10 / 15	le tableau est correctement renseigné	+4 erreurs /0	3 à 4 erreurs /2	1 à 2 erreurs /4	Sans erreur /5		5

Examen: M.C	. Maintenance des s	systèmes embarqu	ués de l'autom	obile - Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2008	3 heures	Coeff. 3	Page 14 / 15

ÉVALUATION DE L'ÉPREUVE E1 , U 1

Compé-					Cr	itères		
tences/ savoirs	QUESTIONS	INDICATEURS				+	Note	Barème
C 23	Question 18 Page 11 / 15	Les valeurs de pression sont identifiées ainsi que les débits de retour	3 erreurs /0	2 erreurs /1	1 erreur /3	Sans erreur /4		4
S 21	Question 19 Page 12 / 15	Le résultat est juste	1 erreur /0			Sans erreur /4		4
C 23	Question 20 Page 12 / 15	Les contrôles sont correctement réalisés et les conditions sont énoncées	+2 erreurs /0	2 erreurs /3	1 erreur /4	Sans erreur /5		5
C23	Question 21 Page 12 / 15	L'élément défectueux est identifié et la réponse justifiée	+1 erreur /0		1 erreur /2	Sans erreur /4		4
S 31	Question 22 Page 13 / 15	Les consignes de sécurité sont clairement énoncées	+1 erreur /0		1 erreur /2	Sans erreur /3		3
S 11	Question 23 Page 13 / 15	Les consignes de sécurité sont clairement énoncées	+1 erreur /0		1 erreur /2	Sans erreur /3		3
S 11	Question 24 Page 13 / 15	L'élément, et les opérations avant livraison sont toutes cités	+1 erreur /0		1 erreur /2	Sans erreur /3		3
						•	/	80

Note sur 20 en points entiers ou ½ point : / 20

Examen: M.C.	Maintenance des sy	stèmes embarqué	s de l'automob	oile Dominante : VP	010 – 25507 R
Épreuve : E1	Etude technique	Session 2006	3 heures	Coeff: 3	Page 15 / 15