BREVET DE TECHNICIEN SUPÉRIEUR

SESSION 2008

Épreuve de mathématiques

GROUPEMENT F

CODE: MATGRF

Durée: 1,5 heure

SPECIALITE	COEFFICIENT	
DESIGN D'ESPACE	1,5	
DESIGN DE PRODUIT	1,5	

Les calculatrices de poche sont autorisées conformément à la circulaire n° 99-186 du 16 novembre 1999. La clarté du raisonnement et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

> Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 3 pages, numérotées de 1/3 à 3/3.

GROUPEMENT F DES BTS	SESSION 2008
Mathématiques	MAT GRF
Durée : 1,5 heure	Page: 1/3

EXERCICE 1 (8 points)

On considère le triangle ABC tel que AC = 24 cm, BC = 28 cm et AB = 40 cm.

- 1. Faire un dessin à l'échelle $\frac{1}{4}$.
- 2. Calculer la mesure en degrés de l'angle $A\hat{C}B$ du triangle ABC. Arrondir à 10^{-1} .
- 3. On admet pour la suite que l'angle $A\hat{C}B$ a une mesure de 100,3°. Calculer l'aire S du triangle ABC. Arrondir à 10^{-1} .
- 4. Pour la suite, on admet que S = 330,6 cm². Calculer l'aire S' du triangle dessiné à la première question.
- 5. On appelle H le pied de la hauteur issue du point C. Placer H sur le dessin. Donner l'expression de l'aire du triangle ABC en fonction de CH. En déduire CH.
- 6. Calculer la mesure en degrés de l'angle $B\hat{A}C$. Arrondir à 10^{-1} .
- 7. En utilisant un résultat admis au 3. et le résultat obtenu au 6., calculer une valeur approchée de la mesure de l'angle \hat{CBA} .
- 8. On appelle I le point situé sur la droite (CH) à l'extérieur du triangle ABC et tel que IH = 8 cm (sur le dessin, compte tenu de l'échelle, IH = 2 cm). Placer le point I et dessiner le triangle A'B'C', image du triangle ABC par la rotation de centre I et d'angle -90° .

GROUPEMENT F DES BTS	SESSION 2008
Mathématiques	MAT GRF
Durée : 1,5 heure	Page : 2/3

EXERCICE 2 (12 points)

L'objectif de cet exercice est de tracer deux courbes de Bézier qui permettent de définir, avec l'axe des abscisses, une forme utilisée pour un logo.

Dans le plan muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité graphique 2 cm, on considère les points :

$$P_0(2,0)$$
; $P_1(1,3)$; $P_2(-2,0)$.

La courbe de Bézier C_1 définie par ces points de contrôle est l'ensemble des points $M_1(t)$ tels que pour tout t de l'intervalle [0, 1]:

$$\overrightarrow{OM_1}(t) = (1-t)^2 \overrightarrow{OP_0} + 2t(1-t) \overrightarrow{OP_1} + t^2 \overrightarrow{OP_2}$$

1. Démontrer que les coordonnées x_1 et y_1 des points M_1 de cette courbe ont pour expression :

$$x_1 = f_1(t) = -2t^2 - 2t + 2$$
 et $y_1 = g_1(t) = -6t^2 + 6t$.

- 2. Étudier les variations de f_1 et g_1 sur [0, 1] et rassembler les résultats dans un tableau unique.
- 3. a) Donner un vecteur directeur de la tangente à la courbe C_1 en chacun des points P_0 et P_2 et tracer ces tangentes. Placer le point P_1 .
 - b) Tracer la courbe C_1 .
- 4. On considère maintenant les points de contrôle :

$$P_2(-2,0)$$
; $P_3(0,2)$ et $P_4(1,0)$.

On admet que la courbe C_2 définie par ces trois points est l'ensemble des points M_2 de coordonnées :

$$x_2 = f_2(t) = -t^2 + 4t - 2$$
 et $y_2 = g_2(t) = -4t^2 + 4t$

où t appartient à l'intervalle [0, 1].

Le tableau des variations conjointes de f_2 et g_2 est le suivant :

t	0	0,5		1
$f_2'(t)$		+		
$f_2(t)$	-2			1
$g_2'(t)$	+	0	_	
$g_2(t)$	0	1 -		0

Montrer que les courbes C_1 et C_2 ont la même tangente au point P_2 .

- 5. Dans cette question, tous les tracés sont à effectuer sur la figure du 3.b).
 - a) Placer les points P_3 et P_4 puis tracer la tangente à la courbe C_2 au point P_4 .
 - b) Tracer la courbe C_2 .

GROUPEMENT F DES BTS	SESSION 2008
Mathématiques	MAT GRF
Durée : 1,5 heure	Page : 3/3

FORMULAIRE DE MATHÉMATIQUES

B.T.S.: groupement E

ART CÉRAMIQUE EXPRESSION VISUELLE OPTION ESPACES DE COMMUNICATION

B.T.S.: groupement F

DESIGN D'ESPACE
DESIGN DE PRODUIT

A. Identités remarquables

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a+b)(a-b)$$

B. Dérivées et primitives

1. Dérivées et primitives de fonctions usuelles

f(x)	f'(x)
x^n	$n x^{n-1}$
ln x	$\frac{1}{x}$
e ^x	e ^x
cos x	$-\sin x$
sin x	cos x

2. Opérations sur les dérivées

$$(u+v)' = u' + v'$$

$$(ku)' = k u'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

C. Formules dans un triangle quelconque

$$\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$$

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

$$C$$

L'aire \mathcal{A} du triangle ABC est donnée par : $\mathcal{A} = \frac{1}{2}bc \sin \hat{A}$

D. Distance de deux points

Dans un plan muni d'un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j})$, si A a pour coordonnées (x_A, y_A) et si B a pour coordonnées (x_B, y_B) , alors $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.