Valeurs de charges de neige

Régions :	A1	A2	B1	B2	C1	C2	D	E
Valeur caractéristique (S _k) de la charge de neige sur le sol à une altitude inférieure à 200 m :	0,45	0,45	0,55	0,55	0,65	0,65	0,90	1,40
Valeur de calcul (S_{Ad}) de la charge exceptionnelle de neige sur le sol :	-	1,00	1,00	1,35	_	1,35	1,80	
Loi de variation de la charge caractéristique pour une altitude supérieure à 200 ;	lititude Δs_1		<u> </u>	Δs ₂				

(charges en KN/m²)

Altitude A	Δ\$1	∆s ₂
de 200 à 500 m	A/1000 - 0,20	1,5 A/1000 - 0,30
de 500 à 1000 m	1,5 A/1000 - 0,45	3,5 A/1000 - 1,30
de 1000 à 2000 m	3,5 A/1000 - 2,45	7 A/1000 4,80

calcul des coefficients μ_i pour une toiture à un ou deux versants sans dispositif de retenue de la neige

ANGLE DU TOIT (DEGRE)	0 < α ≤ 30	30 < α ≤ 60	α ≥ 60
μ ₁ (toiture à 1 ou 2 versants)	0.8	0.8(60 - α)/30	0

$$S = \left(S_{k,200} + \Delta s_i\right) \times \mu_i$$

$$S = S_{Ad} \times \mu_i$$

Valeurs caractéristiques des bois massifs résineux

Symbole	Désignation - Statute	- Unité	C14	-C16	C18	C22	C24	027	C30	C35	C40
f _{m,k}	Contrainte de flexion	N/mm²	14	16	18	22	24	27	30	35	40
f _{t,0,k}	Contrainte de traction axiale	N/mm²	8	10	11	13	14	16	18	21	24
f _{t,90,k}	Contrainte de traction perpendiculaire	N/mm²	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6
f _{c,0,k}	Contrainte de compression axiale	N/mm²	16	17	18	20	21	22	23	25	26
f _{c,90,k}	Contrainte de compression perpendiculaire	N/mm²	2.0	2.2	2.2	2.4	2.5	2.6	2.7	2.8	2.9
$f_{v,k}$	Contrainte de Cisaillement	N/mm²	1.7	1.8	2.0	2.4	2.5	2.8	3.0	3.4	3.8
E _{0,mean}	Module moyen axial	kN/mm²	7	8	9	10	11	11.5	12	13	14
E _{0,05}	Module axial au 5 ^{ème} pourcentile	kN/mm²	4.7	5.4	6.0	6.7	7.4	7.7	8.0	8.7	9.4
E _{90,mean}	Module moyen transversal	kN/mm²	0.23	0.27	0.30	0.33	0.37	0.38	0.40	0.43	0.47
Gmean	Module de cisaillement	kN/mm²	0.44	0.50	0.56	0.63	0.69	0.72	0.75	0.81	0.88
Pk	Masse volumique caractéristique	kg/m³	290	310	320	340	350	370	380	400	420
Pmeam	Masse volumique moyenne	kg/m³	350	370	380	410	420	450	460	480	500

Valeurs caractéristiques des bois lamellés-collés

Symbole	Désignation .	Unitě	Lamellés collés homogènes				Lamellés collés panachés			
· ,	Personal Property of the Control of	Since :	GL24 h	GL28 h	GL32 h	GL36 h	GL24c	GL28c	GL32c	GL36c
f _{m,g,k}	Contrainte de flexion	N/mm²	24	28	32	36	24	28	32	36
f _{t,0,g,k}	Contrainte de traction axiale	N/mm²	16.5	19.5	22.5	26.0	14.0	16.5	19.5	22.5
f _{t,90,g,k}	Contrainte de traction perpendiculaire	N/mm²	0.40	0.45	0.50	0.60	0.35	0.40	0.45	0.50
f _{c,0,g,k}	Contrainte de compression axiale	N/mm²	24	26.5	29	31	21	24	26.5	29
f _{c,90,g,k}	Contrainte de compression perpendiculaire	N/mm²	2.7	3.0	3.3	3.6	2.4	2.7	3.0	3.3
$f_{v,g,k}$	Contrainte de Cisaillement	N/mm²	2.7	3.2	3.8	4.3	2.2	2.7	3.2	3.8
E _{0,g,mean}	Module moyen axial	kN/mm²	11.6	12.6	13.7	14.7	11.6	12.6	13.7	14.7
E _{0,g,05}	Module axial au 5 ^{ème} pourcentile	kN/mm²	9.4	10.2	11.1	11.9	9.4	10.2	11.1	11.9
E _{90,g,mean}	Module moyen transversal	kN/mm²	0.39	0.42	0.46	0.49	0.32	0.39	0.42	0.46
G _{g,mean}	Module de cisaillement	kN/mm²	0.75	0.78	0.85	0.91	0.59	0.72	0.78	0.85
$\rho_{g,k}$	Masse volumique caractéristique	kg/m³	380	410	430	450	350	380	410	430

Valeurs des facteurs ψ_i

Action Variable	Ψ ₀ action variable d'accompagnement KPLOITATION DES BATIMENT	Ψ ₁ Combinaison accidentelle	Ψ ₂ Fluage
Catégorie A : Habitations résidentiels	0.7	0.5	0.3
Catégorie B : Bureaux	0.7	0.5	0.3
Catégorie C : Lieux de réunion	0.7	0.7	0.6
Catégorie D : Commerce	0.7	0.7	0.6
Catégorie E : Stockage	1	0.9	0.8
Catégorie H : toits	0	0	0
CH	IARGES DE NEIGE		
Altitude > 1000 m	0.7	0.5	0.2
Altitude ≤ 1000 m	0.5	0.3	0
А	CTION DU VENT		
	0.6	0.2	0

Valeur du k_{mod} du bois massif, du lamellé-collé, du lamibois (LVL) et du contreplaqué.

Durée de cl	nargement	Classe de service					
Classe de durée	Exemple	1 Hbois < 13% (local chauffé)	2 13% <hbois 20%<br="" <="">(sous abris)</hbois>	3 Hbois > 20 % (extérieur)			
permanente (>10 ans)	Charge de structure	0,6	0,6	0,5			
long terme (6mois à 10 ans)	Stockage	0,7	0,7	0,55			
moyen terme (1 semaine à 6mois)	Charges d'exploitation Neige (alt>1000m)	0,8	0,8	0,65			
court terme (<1semaine)	Neige (alt<1000m)	0,9	0,9	0,7			
Instantanée	Vent Neige exceptionnelle	1,1	1,1	0,9			

Valeur du $\gamma_{\rm M}$ en fonction de la dispersion du matériau

ombinaisons fondamentales		
	Bois	1.3
MATERIAUX	Lamellé collé	1.25
	Lamibois (LVL), OSB	1.2
	ASSEMBLAGES .	1.3
ombinaisons accidentelles		1.0
TATS LIMITES DE SERVICES	3	1.0

Valeurs limites pour les flèches

	Bâtiments courants			Bâtiment	s agricoles et	similaires
	W _{inst} (Q)	W _{net,fin}	W _{fin}	W _{inst} (Q)	W _{net,fin}	W _{fin}
Chevrons (sauf chevron porteur)	-	L/ 150	L/ 150	-	L/ 150	L/ 150
Eléments structuraux	L/ 300	L/ 200	L/ 125	L/ 200	L/ 150	L/ 100

Consoles et porte à faux : La valeur limite sera doublée. La valeur limite minimum est 5 mm. Panneaux de planchers ou supports de toiture : $W_{net,fin} < L/250$

Flèche horizontale: L/200 pour les éléments individuels soumis au vent. Pour les autres applications, elles sont identiques aux valeurs limites verticales des éléments structuraux.

Valeur de K_{def} (fluage)

		Classe de service					
MATERIAU / CLASSE DE DUREE DE		1	2	3			
CHA	RGE	Hbois < 12%	12% <hbois 20%<="" <="" th=""><th>Hbois > 20 %</th></hbois>	Hbois > 20 %			
		(local chauffé)	(sous abris)	(extérieur)			
Bois massif (1)	EN 14081-1	0,60	0,80	2,00			
Lamellé collé	EN 14080	0,60	0,80	2,00			
Lamibois (LVL)	EN 14374	0,60	0,80	2,00			
	EN 636						
Cantrantanut	Partie 1	0.80					
Contreplaqué	Partie 2	0.80	1,00				
	Partie 3	0.80	1,00	2,50			
	EN 300						
OSB	OSB/2	2,25					
	OSB /3 /4	1,50	2,25				
	EN 312			***			
Panneau de	Partie 4	2,25		***			
particules	Partie 5	2,25	3,00				
	Partie 6	1.50					

(1) - Pour les bois massifs placés à une humidité > à 20% et susceptibles de sécher sous charge (classe de service 2) Kdef est augmenté de 1,00

JUSTIFICATION:

$$\text{Flexion + compression}: \frac{\sigma_{c,0,d}}{k_{c,y} \cdot f_{c,0,d}} + \left(\frac{\sigma_{m,d}}{k_{crit} \cdot f_{m,d}}\right)^2 \leq 1$$

Cisaillement : $\frac{\tau_d}{k_u \cdot f_{ud}} \le 1$; Compression transversale : $\frac{\sigma_{c,90,d}}{k_{a,c0} \times f_{a,c0}} \le 1$

f_{m.d}: Résistance de flexion calculée en Mpa.

$$\boldsymbol{f}_{\text{m,d}} = \boldsymbol{f}_{\text{m,k}} \cdot \frac{\boldsymbol{k}_{\text{mod}}}{\gamma_{\text{M}}} \cdot \boldsymbol{k}_{\text{sys}} \cdot \boldsymbol{k}_{\text{h}}$$

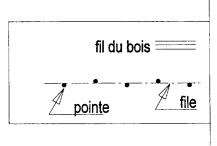
- f_{m,k}: Contrainte caractéristique de résistance en flexion en Mpa
- k_{mod}: Coefficient modificatif en fonction de la charge de plus courte durée et de la classe
- γ_M: Coefficient partiel qui tient compte de la dispersion du matériau
- k_{svs}, Coefficient d'effet système : L'effet système apparaît lorsque plusieurs éléments porteurs de même nature et de même fonction sont sollicités par un même type de chargement réparti uniformément. La résistance de l'ensemble est alors supérieure à la résistance d'un seul élément pris isolément. Nous limiterons son application aux solives, chevron porteurs et fermes assemblées par connecteurs lorsque l'entraxe est inférieur à 1,2m. L'EC5 prévoit l'application du coefficient de 1,1.
- k_h, Coefficient de hauteur:
- Calcul du coefficient de hauteur pour du bois massif

si h ≥ 150 mm

si h ≤ 150 mm

Kh = min $(1,3;(150/h)^{0.2})$, avec h la hauteur de la pièce en mm

Calcul du coefficient de hauteur pour du bois lamellé-collé

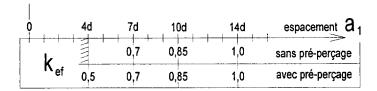

si h ≥ 600 mm

si h ≤ 600 mm

Kh = min $(1,1;(600/h)^{0.1})$, avec h la hauteur de la pièce en mm

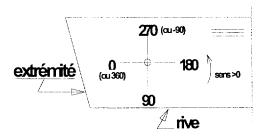
Nombre efficace de pointe

Chaque assemblage doit comporter 2 pointes au minimum. Il faut à chaque fois que cela est possible placer les pointes en quinconce, cela évite les réductions, le nombre efficace de pointes est égal au nombre de pointe. Si les pointes sont alignées la capacité résistante sera diminuée par l'exposant kef inférieur à 1.


n_{ef}=n pour une mise en place habituelle des pointes (placées alternativement de part et d'autre de la file)

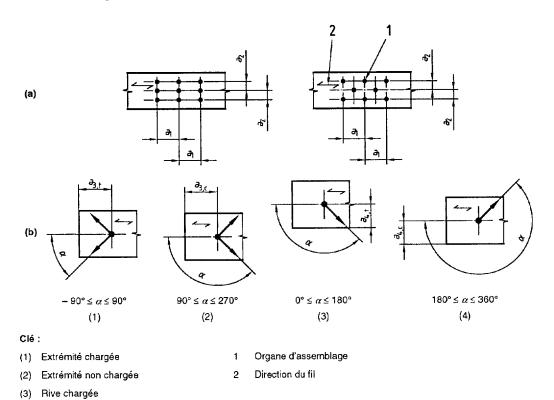
 $n_{\rm ef} = n^{k_{\rm ef}}$ dans tous les autres cas

 $n_{\mbox{\scriptsize ef}}$: nombre efficace de pointes dans la file


n: nombre de pointes dans la file

 $k_{\rm ef}$: Valeurs précisées sur le schéma ci-dessous, pour des valeurs intermédiaires de a_1 on peut effectuer une interpolation linéaire. Par exemple, $k_{\rm ef}$ = 0,75 pour a_1 = 8d

Espacement des pointes


La convention d'orientation de la force par rapport au fil du bois est précisée sur le schéma cidessous.

ſ				distance minimum			
	anneam ant au diatanea	Angle	sans pré-	sans pré-perçage			
	espacement ou distance		$\rho_{\rm k} \le 420 {\rm kg/m}^3$	420≤ρ _k <500kg/m³			
aı	Espacement parallèle au fil	Indépendant 	d<5mm : (5+5 cosα).d d≥5mm : (5+7 cosα).d	(7+8 cosα).d	(4+ cosα).d		
a ₂	Espacement perpendiculaire au fil	Indépendant	5d	7d	$(3+ \sin\alpha).d$		
a _{3,t}	Distance d'extrémité chargée	-90°≤α≤90°	(10+5cosα).d	$(15+5\cos\alpha).d$	$(7+5\cos\alpha).d$		
а _{з,с}	Distance d'extrémité non chargée	90°≤α≤270°	10 d	15d	7d		
a _{4.1}	Distance de rive chargée	0°≤α≤180°	d<5mm : (5+2sinα).d d≥5mm : (5+5sinα).d	d<5mm : (7+2sinα).d d≥5mm : (7+5sinα).d	d<5mm: (3+2sinα).d d≥5mm: (3+4sinα).d		
a _{4,c}	Distance de rive non chargée	180°≤α≤360°	5d	7d	3d		

^{*} pour les panneaux : toutes les valeurs sont à multiplier par 0,85 (valeurs spécifiques pour le contreplaqué)

^{*} pour les assemblages bois-métal : les valeurs de a1 et de a2 sont à multiplier par 0,7

a) Espacements parallèle et perpendiculaire au fil (b) Distance d'extrémité et distance de rive ; α est l'angle entre l'effort et la direction du fil

(4) Rive non chargée

SIMPSON

PCR - Pointes annelées électrozinguées

Les pointes annelées électrozinguées sont préconisées pour les assemblages de structures. Tous nos essais ont été réalisés avec ce type de pointe. Elles sont estampillées \neq .

APPLICATIONS:

Type: fixation de sabots, équerres, feuillards...

Type de porteur : bois massif, bois composite, lamellé-collé...
Type de porté : bois massif, bois composite, lamellé-collé...

MATIERE:

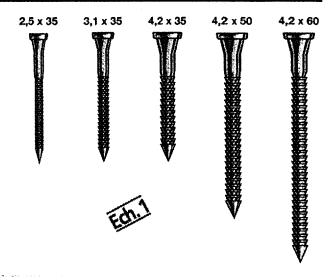
Acier électrozingue (Classe 005 Norme EN 10016).

Agrément Technique Européen: ETA-04/0013.

AVANTAGES:

Tête plate conique renforcée (contact de toute la pointe avec le trou).

VALEURS CARACTÉRISTIQUES :

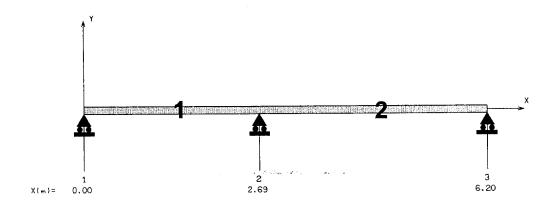

Les valeurs caractéristiques s'entendent au sens de l'Eurocode 5. Elles sont données pour un bois de classe C24 et sont exprimées en kN (1 kN = 100 kg).

Modèle "	DIMENSIC Ø	NS en mm L	Valeur Chailleri 1,5 c t c 2	s Caracián ant Pus as 2,65754	istiques en kN Arractionent Factor
PCR2,5/35	2,5	35	0,	82	0,28
PCR3,1/35	3,1	35	0,84	1,05	0,35
PCR4,0/100	4,0	100	1,48	1,95	1,30

«Valeurs caractéristiques d'ennées pour des bois de classe C24. Pour les autres classes, multiplier les valeurs par les coefficients de passage donnés dans le tableau ci-dessous. Valeurs suivant l'Eurocode 5 pour des tôles d'épaisseur 1,5 ≤ t ≤ 4 mm.»

COEFFICIENTS DE PASSAGE	C14	C18	ASSES DES BO C24	OIS C30 ou GL24	SCL
Cisaillement	0,89	0.95	1.00	1,04	1,15
Arrachement	1,00	1.00	100	1,00	1,00

SCL: Bois composite (Structural Composite Lumber).


	DIMENSIO	NS en man	Valeur	caración	tstiques en kN
Madele	ď	L	Clauffun 13 s s 2	ant Facility	Arrachement Fe.rs
PCR3,7/50	3,7	50	1.	89	0,92
PCR4,0/60	4.0	60	2,	24	1.23
PCR4,2/35	4,2	35	1,71	1,66	0,65
PCR4,2/50	4,2	50	2,23	2,23	1.03
PCR4,2/60	4.2	60	2,	40	1.28

«Valeurs caracteristiques données pour des bois de classe C24. Pour les autres classes, multiplier les valeurs par les coefficients de passage donnés dans le tableau ci-dessous. Valeurs suivant ETA-04/0013 pour des tôles d'épaisseur 1,5 ≤ t ≤ 4 mm.»

COEFFICIENTS DE PASSAGE	G14	CI. C18	ASSES DES BO	XIS C30 ou GL24	SCL
Cisaillement	0,84	0.92	1,00	1,08	1,36
Arrachement	0.69	0,84	1,00	1,18	1,88

SCL: Bois composite (Structural Composite Lumber).

Modélisation de la poutre maîtresse

Cas de charges	Efforts intérieurs [N N.m]				
	N = Effort normal TY = Effort tranchant MfZ = Moment fléchissant				
	ELE ori No TYo MfZo ext Ne TYe MfZe TYmax MfZmax				
Cas de charge : G	Cas de charge : G				
2 Charge(s) uniformément répartie(s) [N/m] Poutre 1 : px = 0.0 py = -750.0 Poutre 2 : px = 0.0 py = -750.0	1 1 -0.0 -656.3 0.0 2 0.0 1361.2 -948.2 1361.2 948.2 2 2 -0.0 -1586.4 -948.2 3 0.0 1046.1 0.0 1586.4 948.2				
Cas de charge : Q1	Cas de charge : Q1				
2 Charge(s) uniformément répartie(s) [N/m] Poutre 1 : px = 0.0 py = -7500.0 Poutre 2 : px = 0.0 py = -7500.0	1 1 -0.0 -6562.5 -0.0 2 0.0 13612.5 -9482.2 13612.5 9482.2 2 2 -0.0 -15864.0 -9482.2 3 0.0 10461.0 0.0 15864.0 9482.2				
Cas de charge : Q2					
1 Charge(s) uniformément répartie(s) [N/m]					
Poutre 2 : px = 0.0 py = -7500.0					