

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Diplôme de Technicien Supérieur en Imagerie Médicale et Radiologie Thérapeutique

Durée: 3 heures Coefficient: 3

Session 2009

Les données sont en italique. L'utilisation de la calculatrice est autorisée. Le sujet comporte 7 pages. L'ANNEXE PAGE 7 EST À RENDRE AVEC LA COPIE.

PHYSIQUE

PREMIÈRE PARTIE : CONTRÔLE DE CONNAISSANCES (30 points)

Données :

• Constante de Planck:

 $h = 6.63 \times 10^{-34} J.s$

• Célérité de la lumière dans le vide :

 $c = 3.00 \times 10^{-8} \text{ m.s}^{-1}$

• $1 eV = 1.60 \times 10^{-19} J$

• Surface d'une sphère de rayon r :

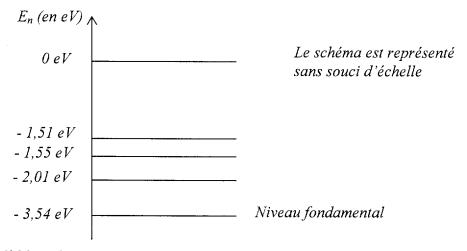
 $4 \pi r^2$

ullet Surface d'un disque de rayon r:

 πr^2

• Périmètre d'un disque de rayon r :

 $2\pi r$


Q1. QUESTIONNAIRE À CHOIX MULTIPLES (15 points)

Chacune des propositions de 1 à 9 contient une seule affirmation vraie (a, ou b, ou c, ou d). Choisir la bonne affirmation sans la justifier pour les questions 1, 2, 3, 4, 5, 6 et en la justifiant pour les questions 7, 8, 9.

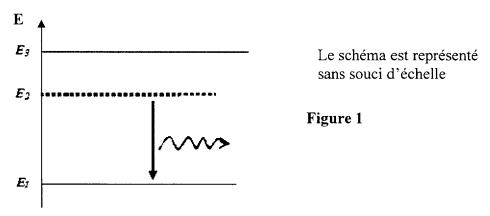
- 1. Les ondes électromagnétiques :
 - a. se propagent dans le vide d'autant plus rapidement que leur fréquence est plus élevée.
 - b. transportent une énergie d'autant plus grande que leur fréquence est plus élevée.
 - c. sont des ondes mécaniques.
 - d. ne se propagent pas dans le vide.
- 2. Les électrons accélérés dans un tube à rayons X :
 - a. acquièrent une énergie cinétique qui dépend de la tension accélératrice.
 - b. se déplacent de l'anode vers la cathode.
 - c. décrivent un trajet en forme de spirale afin de permettre de réduire l'encombrement d'un tube à rayons X.
 - d. provoquent dans le tube un courant électrique dont l'intensité est de l'ordre de plusieurs milliers d'ampère.
- 3. La capture électronique :
 - a. peut entrer en compétition avec la radioactivité β^+ .
 - b. peut entrer en compétition avec la radioactivité β^{-} .
 - c. peut être associée à une émission gamma provenant du cortège électronique.
 - d. n'est pas une réaction isobarique.

HIMSC

- 4. Lors d'un examen scintigraphique avec le technétium 99 m (noyau métastable) on détecte :
 - a. des électrons.
 - b. des positons.
 - c. des particules α .
 - d. des photons.
- 5. Dire que l'énergie d'un atome est quantifiée, cela signifie que :
 - a. cette énergie est un multiple de la constante de Planck h.
 - b. cette énergie est toujours un nombre entier.
 - c. cette énergie ne peut prendre que des valeurs discrètes.
 - d. cet atome est à l'état fondamental.
- **6.** L'effet photoélectrique :
 - a. se produit entre un photon et un électron.
 - b. se produit entre un photon et un noyau.
 - c. donne naissance à un photon diffusé.
 - d. se produit quelque soit l'énergie du photon incident.
- 7. Pour effectuer une scintigraphie thyroïdienne à l'iode 123, dont le temps de demi-vie (période radioactive) est de 13 heures, on injecte à un patient de l'iode 123, d'activité 7,4 MBq. L'activité de l'iode restante dans l'organisme, 4,0 heures après injection vaut :
 - a. 5,4 MBq.
 - b. 6,7 MBq.
 - c. 6,0 MBq.
 - d. 9,2 MBq.
- **8.** Une épaisseur de plomb de 0,80 mm divise par 6 l'intensité du flux incident de photons, d'énergie 140 keV.
- La CDA (couche de demi-atténuation) vaut :
 - a. 0,13 mm.
 - b. 0,40 mm.
 - c. 0.27 mm.
 - d. 0,31 mm.
- 9. Soit le diagramme énergétique (simplifié) d'un atome de lithium :

Un atome de lithium dans un état excité:

- a. peut émettre un photon d'énergie 2,19 eV.
- b. peut émettre un photon associé à une radiation de longueur d'onde 2,69×10³ nm.
- c. peut absorber un photon d'énergie 0,80 eV.
- d. peut émettre des photons dans le domaine des rayons X.


Q2. LE LASER ERBIUM-YAG (15 points)

Le Laser à trois niveaux, Erbium-YAG est utilisé en chirurgie esthétique et en chirurgie correctrice des yeux.

1. Dans le Laser Erbium-YAG le milieu amplificateur est solide. La matrice est un cristal de YAG (grenat d'yttrium et d'aluminium) dopé en ions Erbium Er³⁺ (dont les niveaux d'énergie sont représentés sur la **figure 1** ci-dessous). Ils sont le siège des transitions de pompage optique et d'émission stimulée. La longueur d'onde la mieux adaptée au pompage du barreau de Er-YAG est de 980 nm.

La longueur d'onde du rayonnement Laser émis vaut 2936 nm.

- 1.1. Représenter sur la figure 1, de la feuille annexe page 7, À RENDRE AVEC LA COPIE, la transition du pompage optique.
- 1.2. Décrire le phénomène d'émission stimulée entre le niveau E₂ et E₁. Quelles sont les caractéristiques du photon émis ?
- 1.3. Un autre type d'émission beaucoup plus fréquent existe dans la nature. Lequel ?
- 1.4. Comment qualifier la transition $E_3 \rightarrow E_2$?

- 1.5. Calculer l'écart énergétique (en eV) entre les niveaux E₁ et E₃.
- 1.6. Dans quel domaine du spectre électromagnétique émet ce Laser Er-YAG?
- 1.7. Calculer l'écart énergétique (en eV) entre les niveaux E₂ et E₁.
- 1.8. Pourquoi faut-il un système de refroidissement à eau dans ce Laser?
- **2.** Ce Laser émet des impulsions avec une cadence de tir de fréquence f = 10 Hz (10 impulsions par seconde). Chaque impulsion a une durée $\tau = 0,20$ ms et une énergie E = 300 mJ.
- 2.1. Calculer le nombre de photons émis par impulsion, sachant que *chaque photon a une énergie* $E_{photon} = 6.76 \times 10^{-20} J$.
- 2.2. Calculer la puissance lumineuse d'émission d'une impulsion.
- 2.3. Le spot de ce Laser a un rayon r = 0.50 mm. Calculer l'intensité (ou puissance surfacique) du Laser.
- 2.4. Une séance a une durée $\Delta t = 4.5$ secondes. Calculer l'énergie rayonnante émise au cours de cette séance.

DEUXIÈME PARTIE: PROBLÈME (30 points)

Données :

• Constante de Planck : $h = 6.63 \times 10^{-34} \text{ J.s}$ • Célérité de la lumière : $c = 3.00 \times 10^8 \text{ m.s}^{-1}$ • Charge élémentaire : $e = 1.60 \times 10^{-19} \text{ C}$ • Masse d'un proton : $m_p = 1.67 \times 10^{-27} \text{ kg}$

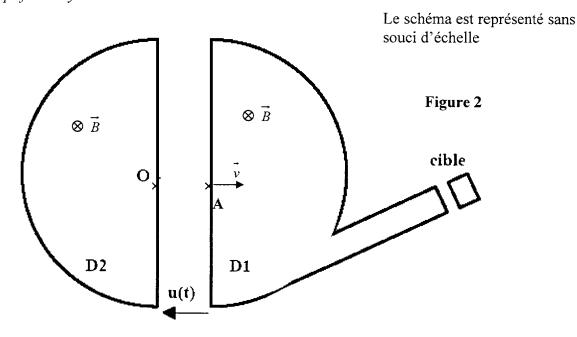
• Unité d'activité : 1 Ci (curie) = 3.7×10^{10} Bq

symbole de l'élément chimique	Са	Sc	Ti	Tl	Pb	Bi	Po	At
numéro atomique	20	21	22	81	82	83	84	85

Les 3 parties sont indépendantes.

I. LE CYCLOTRON ARRONAX

Un cyclotron est un instrument qui sert à accélérer des particules chargées, permettant ensuite de réaliser des expériences de physique nucléaire. Dans ce problème les particules chargées sont des protons.

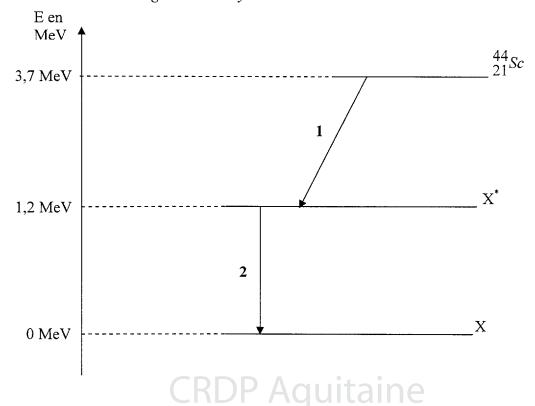

Le cyclotron est formé de deux demi-cylindres conducteurs creux appelés « dees » et séparés par un intervalle étroit. Un champ magnétique uniforme \vec{B} de valeur 1,5 T, règne à l'intérieur de chaque « dee », sa direction est perpendiculaire au plan de la **figure 2** ci-dessous.

Un champ électrique \vec{E} , variable dans le temps, peut être établi dans l'intervalle étroit qui sépare les « dees ». Il permet **d'augmenter** la vitesse des protons chaque fois qu'ils pénètrent dans cet intervalle. Le champ électrique est nul à l'intérieur des « dees ». On négligera la durée du transit entre les deux « dees ».

Le champ électrique variable est obtenu en appliquant une tension sinusoïdale entre les deux « dees », de valeur maximale $U_M = 50~000~V$ et de fréquence f.

On injecte un proton au point O avec une vitesse négligeable. Il est alors accéléré par le champ électrique et pénètre dans le « dee » D_1 au point A avec une vitesse \vec{v} . (On considère que le poids du proton est négligeable devant les autres forces en présence).

Schéma simplifié du cyclotron :


HIMSC

On démontre, et vous l'admettrez, que le mouvement du proton dans un « dee » est circulaire uniforme. Le rayon R de la trajectoire est lié à la vitesse v du proton par la relation $R = \frac{m_p v}{eR}$.

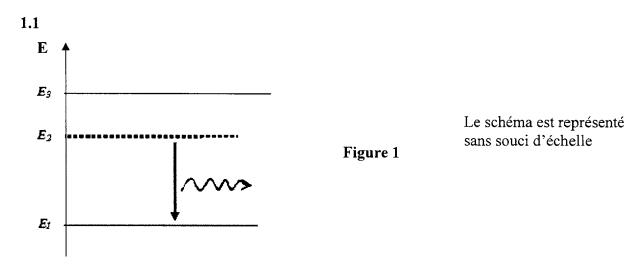
- 1. Nommer la force à l'origine du mouvement circulaire uniforme à l'intérieur d'un « dee » ? Donner son expression vectorielle. Puis la représenter, sans souci d'échelle, à l'entrée du « dee » D_1 au point A de la figure 2, de la feuille annexe page 7, À RENDRE AVEC LA COPIE en justifiant la réponse.
- 2. Compléter la figure 2, de la feuille annexe page 7, À RENDRE AVEC LA COPIE, en représentant l'allure de la trajectoire d'un proton émis avec la vitesse \vec{v} , jusqu'à sa sortie du cyclotron après un nombre de tours arbitrairement choisis. (Aucun calcul n'est demandé).
- 3. Le rayon maximal de la trajectoire semi-circulaire dans le « dee » vaut $R_{max} = 0.67$ m. Calculer alors la vitesse maximale v_{max} puis l'énergie cinétique maximale Ec_{max} (en J et en MeV) du proton à la sortie du cyclotron. (On considèrera pour simplifier le proton comme non relativiste).
- 4. Établir l'expression littérale de la durée θ d'un demi-tour dans un « dee ». Calculer sa valeur.
- 5. Calculer, en la justifiant, la fréquence f en MHz de la tension sinusoïdale.

II. PRODUCTION ET UTILISATION DU SCANDIUM 44

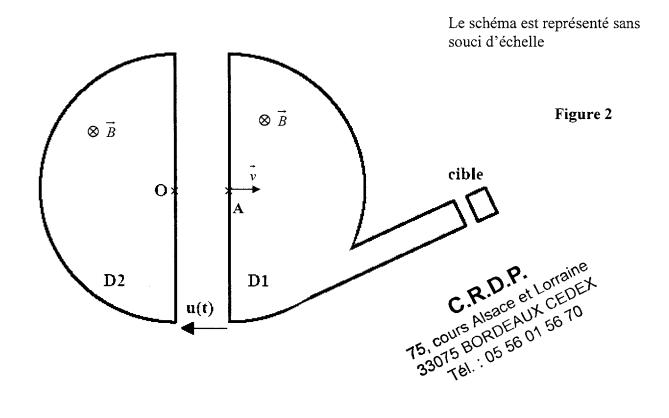
- 1. Grâce à ces protons de haute énergie, le noyau de scandium 44 est obtenu à partir de calcium 44 selon la réaction de production notée ⁴⁴Ca (p,n) ⁴⁴Sc. Écrire l'équation de cette réaction nucléaire.
- **2.** Le noyau d'un atome de scandium $44 \text{ s'écrit } {}^{44}_{21}\text{Sc}$.
- 2.1. Donner la configuration électronique de plus basse énergie de l'atome de scandium 44.
- 2.2. Situer l'élément scandium dans la classification périodique à 18 colonnes.
- 3. Le schéma de la désintégration du noyau de scandium 44 est le suivant :

HIMSC

- 3.1. Écrire l'équation de la désintégration β^+ du noyau de scandium 44 symbolisée par la flèche 1, en précisant le symbole du noyau obtenu.
- 3.2. Écrire l'équation de la transformation de X^* en X. De quelle nature est le rayonnement émis ? Calculer son énergie.
- 3.3. Le scandium 44 a un temps de demi-vie (période radioactive) T = 4,0 heures. Que signifie cette donnée?
- **4.** Des études sont actuellement menées en TEP (tomographie par émission de positons) pour développer une technique employant du scandium 44. Pourquoi lit-on dans les revues le terme de « TEP 3 gammas » ? Justifier votre réponse.


III. α IMMUNOTHÉRAPIE AVEC L'ASTATE 211

Le cyclotron ARRONAX accélère aussi des particules α qui permettent d'obtenir des noyaux d'astate 211 qui s'écrivent $^{211}_{85}$ At. Ces noyaux sont radioactifs α et ont un temps de demi-vie (période radioactive) T=7,2 h.


- **1.** L'équation de production de ces noyaux s'écrit : $^{209}_{83}Bi + ^{4}_{2}He \rightarrow ^{211}_{85}At + 2^{1}_{0}n$ Écrire cette équation sous la forme symbolique proposée au II.1.
- 2. Écrire l'équation de la désintégration α de l'astate 211 en identifiant le noyau obtenu.
- 3. On injecte à un patient un échantillon d'activité 10 mCi contenant de l'astate 211.
- 3.1. Calculer dans le système international d'unités, la constante radioactive de l'astate 211.
- 3.2. Calculer le nombre de noyaux d'astate 211 injectés au patient.
- **4.** La particule α est émise avec une énergie cinétique E=6,78 MeV. Dans une tumeur cancéreuse on supposera, en première hypothèse, que le transfert d'énergie linéique (T.E.L.) de ces particules α vaut 120 keV/ μ m.
- 4.1. Calculer la distance parcourue par ces particules α. Comparer cette distance au diamètre d'une cellule cancéreuse égal à environ 20 μm.
- 4.2. L'énergie moyenne nécessaire pour former une paire d'ions dans l'eau vaut $\omega = 32 \text{ eV}$. Calculer le nombre total d'ionisations I_t provoquées par une particule α dans la tumeur en assimilant les cellules cancéreuses à de l'eau.
- 4.3. En déduire l'ionisation spécifique (ou densité d'ionisation linéique) I_S.
- 4.4. L'hypothèse d'un T.E.L. constant est-elle réaliste? Justifier votre réponse.

ANNEXE À RENDRE AVEC LA COPIE

Q2. LE LASER ERBIUM-YAG

I. LE CYCLOTRON ARRONAX

