

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

BACCALAURÉAT PROFESSIONNEL TECHNICIEN EN INSTALLATION DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES

BACCALAURÉAT PROFESSIONNEL TECHNICIEN EN MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES

CORRIGE

SESSION 2009

E12

MATHÉMATIQUES - SCIENCES PHYSIQUES

Durée : 2 heures

Coefficient: 2

Mathématiques (15 points)

Exercice n°1 (12 points)

Partie A (2,5 points)

1.
$$\theta(3) = 8.9 \,^{\circ}\text{C}$$

0,5 point

2. a)
$$-0.3 x^2 + 3.2 x + 2 = 10$$
; $-0.3 x^2 + 3.2 x - 8 = 0$

0,5 point

b)
$$\Delta = 0.64$$
 $x_1 = 4$ ($x_2 = 6.67$ hors du domaine d'étude).

1 point

0,5 point

Partie B (2 points)

1.

a)
$$F(x) = -0.1 x^3 + 1.6 x^2 + 2 x$$

1 point

b)
$$I = 37,5$$

0,5 point

e)
$$\theta_{\rm m} = 7.5 \, ^{\circ}{\rm C}$$

0,5 point

Partie C (7,5 points)

1.
$$\theta(L) = (10-2)(1-e^{-0.1L})+2$$

1 point

$$\theta$$
 (L) = 8 + 2 - 8e^{-0,1 L}: θ (L) = 10 - 8 e^{-0,1 L}

2.

a)
$$g'(x) = -8 \times -0.1 e^{-0.1 x} = 0.8 e^{-0.1 x}$$

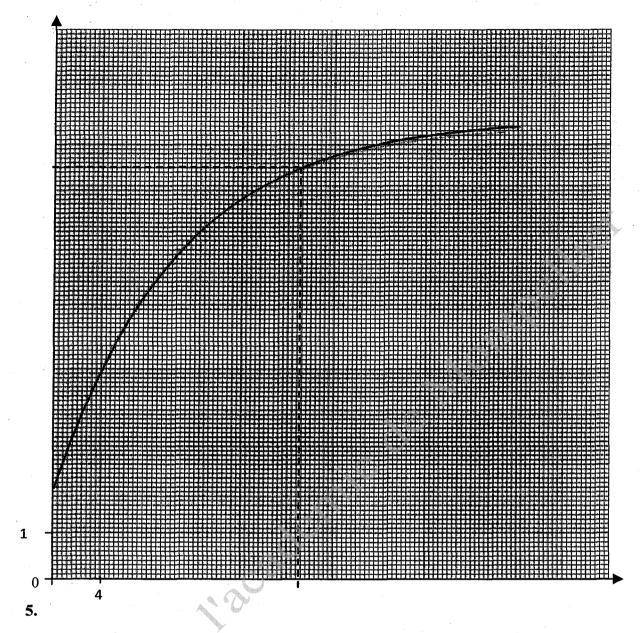
1 point

b)
$$e^{-0.1x} > 0$$
 et $0.8 > 0$

donc
$$g'(x) > 0$$

1 point

c) g est croissante.


0,5 point

3. 1,5 point

x	0	4	8	12	16	20	24	28	32	36	40
g(x)	2	4,6	6,4	7,6	8,4	8,9	9,3	9,5	9,7	9,8	9,9

4. Voir graphique

1 point

a) g(x) = 9 pour x = 21 m

1 point

b) La longueur de la canalisation enterrée est de 21m.

0,5 point

Exercice n°2 (3 points)

1.
$$u_2 = 157500 \in ; u_3 = 165375 \in$$

1 point

2. Suite géométrique de raison q = 1,05: $u_{2}/u_{1} = u_{3}/u_{2} = 1,05$ Accepter toute justification exacte

1 point

3. $u_{10} = 150\ 000 \times (1,05)^9 \approx 232\ 699 \in$

1 point

CORRIGE SCIENCES PHYSIQUES (5 points)

EXERCICE 1 (3 points)

Calcul de l'intensité du courant électrique I alimentant le moteur.

$$S/U = I = 1,022 A$$

1 point

Calcul du facteur de puissance de ce moteur : $\cos \varphi = P/S = 0.85$

1 point

3. Calcul de la puissance réactive de ce moteur arrondie au var.

$$Q = \sqrt{S^2 - P^2} \approx 123 \text{ var ou } Q = P \tan \varphi = 124 \text{ var}$$

$$Q = P \tan \phi = 124 \text{ var}$$

1 point

EXERCICE 2 (2 points)

1. Calcul de la vitesse de l'air dans la canalisation en m/s :

$$Q = 90 / 3600 = 0,025 \text{ m}^3/\text{s}$$

$$S = \pi D^2 / 4 = \pi \times 0.01 m^2$$

$$v = Q/S = 0.025 / (0.01 \pi) \approx 0.8 \text{ m/s}$$

1 point

Calcul de la pression p_2 de l'air, à la profondeur de 2m dans la canalisation:

$$\frac{1}{2}\rho v_1^2 + p_1 + \rho g z_1 = \frac{1}{2}\rho v_2^2 + p_2 + \rho g z_2 =$$

$$\frac{1}{2}1,3\times0^2+101300+1,3\times9,8\times0=\frac{1}{2}1,3\times0,8^2+p_2+1,3\times9,8\times-2=$$

$$101\ 300 = 0,416 + p_2 - 25,48$$

$$p_2 = 101\ 300 - 0,416 + 25,48 \approx 101\ 325\ Pa$$

1 point