

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Baccalauréat professionnel

ARTISANAT ET METIERS D'ART

Option: vêtements et accessoires de mode

Durée: 2 heures

Coefficient: 2,5

E1- EPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve B1:

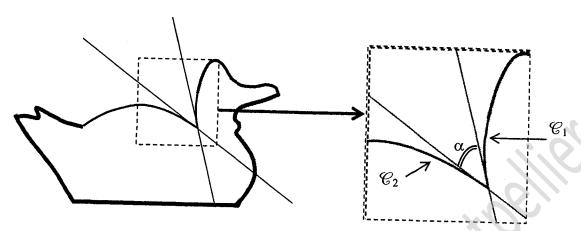
MATHEMATIQUES

Le matériel autorisé comprend toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante.

(Réf. C. n° 99-186 du 16-11-1999)

Ce sujet comprend 5 pages dont une annexe et un formulaire de mathématiques. Seule l'annexe est à rendre avec la copie. Mlle Vicky Dupont, diplômée d'un baccalauréat professionnel "Artisanat et Métiers d'Art" a créé en 2007, une micro-entreprise de broderie.

Une grande marque de vêtements de chasse, qui lui fait confiance depuis cette date, commande pour 2009, la confection de 6 050 écussons portant le motif d'un canard, représenté ci-dessous. Pour des raisons esthétiques, l'angle α entre la nuque et l'aile doit avoir une mesure comprise entre 35° et 45°.



Le but de l'exercice 1 est de tracer le profil \mathcal{C}_1 de la nuque et d'une partie \mathcal{C}_2 du dos du canard, puis de vérifier si la contrainte sur la mesure de l'angle α est vérifiée.

Exercice 1:

Partie A: Etude d'une fonction (7 points).

L'arc C_2 est modélisé par la représentation graphique de la fonction f définie sur l'intervalle [2;5] par $f(x) = -0.25x^2 + 1.75x - 0.5$.

- 1. On désigne par f' la dérivée de la fonction f.
 - 1.1. Calculer f'(x).
 - 1.2. Calculer f'(5).
 - 1.3. Résoudre l'équation f'(x) = 0.
- 2. Compléter le tableau de variation de cette fonction sur l'annexe page 4/5.
- 3. Compléter le tableau de valeurs de f(x) sur l'annexe.
- 4. Tracer la représentation graphique de la fonction f sur l'intervalle [2; 5] dans le repère de l'annexe.
- 5. Justifier que les points F(2; 2) et I(5; 2) sont des points de la courbe \mathcal{C}_2 .
- 6. La nuque du canard est un arc de cercle de centre O(7 ; 2,5) et de rayon [OI]. Tracer l'arc ÎE dans le repère de l'annexe.

Partie B : vérification de la contrainte par un calcul vectoriel (9 points)

- 1. Dans le repère de **l'annexe page 4/5**, placer les points suivants : A(3; 3,5), B(7; 0,5), C(4,5; 4) et D(5,5; 0).
- 2. Equation de droite:
 - 2.1. Tracer la droite (AB) dans le repère de l'annexe.
 - 2.2. Déterminer une équation de la droite (AB).
 - 2.3. Justifier, en utilisant un résultat de la question 1 de la partie A, que la droite (AB) est tangente à \mathcal{C}_2 au point I.
- 3. Position de la droite (CD):
 - 3.1. Déterminer les coordonnées des vecteurs TC et TO.
 - 3.2. Calculer IC. IO
 - 3.3. Que peut-on en déduire pour la droite (IC) par rapport au cercle de centre O et de rayon [OI] ?
- 4. Calcul vectoriel:
 - 4.1. Déterminer les coordonnées des vecteurs TA et TC
 - 4.2. Calculer $\|\overrightarrow{IA}\|$ puis $\|\overrightarrow{IC}\|$. Arrondir les valeurs au millième.
 - 4.3. Montrer que \overrightarrow{IC} . $\overrightarrow{IA} = 4$
 - 4.4. Calculer cos CIA. Arrondir la valeur au centième.
 - 4.5. Déterminer, en degré, la mesure de l'angle $\widehat{\text{CIA}}$. Arrondir la valeur à l'unité.
 - 4.6. La contrainte sur la valeur de la mesure de l'angle α est-elle vérifiée ? Justifier la réponse.

Exercice 2: suite géométrique (4 points)

Le tableau ci-dessous montre l'évolution du nombre d'écussons fabriqués par Mlle Vicky Dupont pour la grande marque de vêtements de chasse.

Année:	2007	2008	2009	2010	2011	2012
Nombre d'écussons: E_n	$E_1 = 5000$	$E_2 = 5500$	$E_3 = 6~050$	E ₄	E_5	E_6

- 1. On admet que la production annuelle (E_n) définit une suite géométrique. Déterminer la raison q de cette suite.
- 2. Calculer le nombre d'écussons E_6 qui seront fabriqués en 2012. Arrondir à l'unité.
- 3. Déterminer l'accroissement annuel de la fabrication de cet écusson entre 2007 et 2008.
- 4. Exprimer cette augmentation en pourcentage d'évolution entre 2007 et 2008.
- 5. Calculer S₆ le nombre total d'écussons confectionnés entre 2007 et 2012.

Exercice 1, question 2.

Tableau de variation:

x	
Signe de $f'(x)$	
Variation de f	

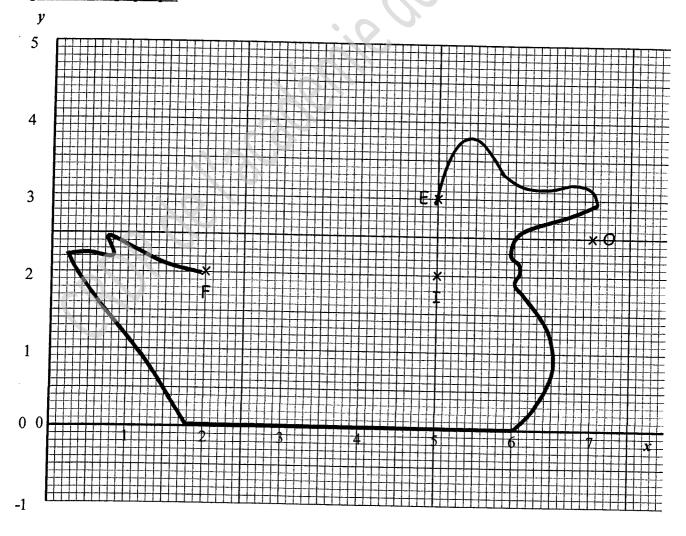
Exercice 1, question 3.

Tableau de valeurs:

- 1								
	\boldsymbol{x}	2	2,5	3	3.5	1	1.5	5
- [f(x)				2,5	7	4,3)
-	J(x)		2,3		2,6		23	
٠					_,-		2,5	1

Exercice 1, questions 4 et 6.

Représentation graphique:



Formulaire baccalauréat professionnel artisanat et métier d'art option VAM

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	a
x^2	2x
x^3	$3x^2$
1	1
$\frac{-}{x}$	$-\frac{1}{x^2}$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien: ln

$$\ln (ab) = \ln a + \ln b \quad \ln (a^n) = n \ln a$$

$$\ln (\frac{a}{b}) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes:

$$u_1 + u_2 + ... + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_1.q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\sin 2a = 2 \sin a \cos a$$

Statistiques

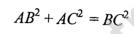
Effectif total
$$N = \sum_{i=1}^{p} n_i$$

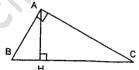
Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type
$$\sigma = \sqrt{V}$$

Relations métriques dans le triangle rectangle





$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Résolution de triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle:
$$\frac{1}{2}$$
 BC sin \widehat{A} Trapèze: $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume BhSphère de rayon R:

Aire: $4\pi R^2$ Volume: $\frac{4}{2}\pi R^3$

Cône de révolution ou pyramide de base B et de hauteur h: Volume $\frac{1}{2}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\vec{v}.\,\vec{v}'=xx'+yy'$$

$$\vec{v} \cdot \vec{v}' = xx' + yy' + zz'$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$$

Si
$$\overrightarrow{v} \neq \overrightarrow{0}$$
 et $\overrightarrow{v}' \neq \overrightarrow{0}$: $\overrightarrow{v}.\overrightarrow{v}' = ||\overrightarrow{v}|| \times ||\overrightarrow{v}'|| \times \cos(\overrightarrow{v}, \overrightarrow{v}')$

$$\overrightarrow{v}.\overrightarrow{v}' = 0$$
 si et seulement si $\overrightarrow{v} \perp \overrightarrow{v}'$